月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
電腦學刊 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
Fault Diagnosis of Train Body Sign Abnormal Pattern with Deep Learning Based Target Detection
並列篇名
Fault Diagnosis of Train Body Sign Abnormal Pattern with Deep Learning Based Target Detection
作者 Yuanjiang Hu (Yuanjiang Hu)Aisen Yang (Aisen Yang)Zonghong Zhang (Zonghong Zhang)Na Qin (Na Qin)
英文摘要

With the development of high-speed trains in recent years, security issues have received more attention. Automatic visual inspection of the train operation system for detecting abnormalities has become a fundamental element to guarantee the safety of the train operation. Train body sign patterns like the loss and fracture of signs and lock catch (SLC) on the electrical box cover (EBC) affect the regular operation of the train electrical system. In this paper, to ensure the safe operation of the train, a novel method combining a faster region-based convolutional neural network (Faster R-CNN) and similarity metrics is proposed to detect the abnormality of SLCs on train EBC. First, the positions of body train signs of multiple sizes are located by Faster R-CNN. Then, the regions of interest (ROI) are cut out and resized to the same size as the corresponding template images. Finally, by similarity measures, the status of the train body sign pattern is judged by comparing with the given threshold similarity value between ROIs and the template images. It is worth noting that the combination of Faster R-CNN and cosine similarity renders high accuracy in small target detection and strong robustness in image similarity comparison. The effectiveness of the proposed fault detection method and its superiority over the other types of combined methods are verified by actual experiments on the train of Guangzhou Metro Line 2.

 

起訖頁 121-136
關鍵詞 fault diagnosistrain operation systemfaster R-CNNimage similarity
刊名 電腦學刊  
期數 202306 (34:3期)
該期刊-上一篇 EEG Emotion Recognition Method Based on 3D Feature Map and Improved DenseNet
該期刊-下一篇 Ensemble Learning Network for Handwritten Digit Recognition Based on Fusion Optimized CNN
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄