月旦知識庫
月旦知識庫 會員登入元照網路書店月旦品評家
 
 
  1. 熱門:
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
體育學報 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
網路圍棋比賽影片影像自動辨識系統之開發
並列篇名
Development of an automatic recognition system for online Go (Weiqi) videos
作者 歐俠宏陳龍弘
中文摘要
緒論:本研究旨在通過開發一套可自動辨識與分析網路圍棋比賽影像的系統,達到自動提取和辨識棋盤上的訊息,做為未來分析圍棋比賽內容的基礎分析工具,以提升我國圍棋選手的能力與國際圍棋賽事的成績。方法:研究者選定YouTube上的公開比賽影片作為數據來源,並設計了四個主要的功能模組:影像轉換模組、棋盤切割模組、棋盤取子模組和棋盤串聯模組。首先,影像轉換模組使用網頁爬蟲技術和YouTube API獲取影像,並利用OpenCV將其轉換為圖像幀。接著,棋盤切割模組通過DETR模型進行棋盤檢測和信息提取,並採用影像增強技術提高模型的泛化能力。在棋盤取子模組中,研究者將棋盤劃分為361個等分,並使用ViT模型進行棋子分類和檢測,從而減少標記數據需求。最後,棋盤串聯模組整合不同時間序列的棋盤信息,開發了提子和時序轉換算法,實現了棋局的連貫記錄。結果:本研究蒐集了135支來自YouTube的圍棋比賽影片,並依據影片的完成度進行篩選,篩選後保留了86支具有完整比賽過程的有效影片。影片總長度為1,281,642.77秒,共產生1,332,791張圖片。經由本研究的研究方法進行辨識判定後,本研究從每支影片中隨機抽取約6張圖片,使用人工審核檢視研究結果的正確性,並採用嚴格的正確率公式來判定影像辨識的正確性,依據驗證的結果,影像判斷的正確率為82.56%。結論:綜上所述,本研究成功實現了自動提取和辨識圍棋比賽視頻中的棋盤信息,為圍棋數據分析提供了堅實基礎。然而,系統的整體性能仍有提升空間,未來的改進將進一步增強其實用性和泛化能力。
英文摘要
Introduction: This study sought to automatically extract and identify information on the Go board by analyzing online Go tournament videos. Methods: The researchers selected publicly available tournament videos on YouTube as the data source, and designed four main functional modules: a video conversion module, a board segmentation module, a stone detection module, and a board sequence reconstruction module. The video conversion module used web scraping techniques and the YouTube API to acquire the videos, which were then converted into image frames using OpenCV. The board segmentation module employed the DETR model for board detection and information extraction, utilizing image enhancement techniques to improve the model’s generalization ability. In the stone detection module, the researchers divided the board into 361 equal parts and used the ViT model for stone classification and detection, thus reducing the need for labeled data. Finally, the board sequence reconstruction module integrated board information across different time sequences, using algorithms for stone removal and sequence transformation to achieve coherent game record reconstructions. Results: The study collected 135 Go match videos from YouTube, which were then filtered based on the completeness of the matches. After filtering, 86 videos with complete matches were retained. The total length of these videos was 1,281,642.77 seconds, and they generated a total of 1,332,791 images. Using the research methods developed in this study, approximately six images from each video were randomly sampled for manual review in order to verify the accuracy of the results. A strict accuracy formula was used to determine the correctness of the image recognition, and the validation results showed an image recognition accuracy of 82.56%. Conclusion: This study successfully achieved the automatic extraction and identification of Go board information from tournament videos, providing a solid foundation for Go data analysis. However, there was still some room for improvement in the overall performance of the system. Future enhancements will further increase its practicality and generalization capabilities.
起訖頁 141-154
關鍵詞 圍棋影像辨識深度學習圍棋棋譜物體檢測Go image recognitiondeep learningGo scoreobject detection
刊名 體育學報  
期數 202506 (58:2期)
出版單位 中華民國體育學會
該期刊-上一篇 臺灣不同年齡族群24小時活動行為之時間使用模式
該期刊-下一篇 精準運動科學:慣性感測器量測體操單槓動作表現之指標建構
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄