月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
中華印刷科技年報 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
AI人工智慧模型開發──以資源回收物自動分類為例
並列篇名
AI artificial intelligence model development - automatic classification of resource recycling
作者 蘇有劉仁筑
中文摘要
本研究旨在開發一個基於AI人工智慧模型的資源回收物自動分類系統,以解決現代社會中資源回收的挑戰。資源回收是一個關鍵的環境議題,但目前仍存在著人力不足、分類不準確等問題。為了提高回收效率和資源利用率,本研究採用了深度學習技術,設計了一個自動分類模型。首先,我們收集了大量的資源回收物圖片數據集,包括各種常見的回收物品,如紙張、塑料瓶和玻璃等。這些圖片數據集經過標註和預處理,以供模型訓練和測試使用。接著,我們選擇了一個深度學習架構,卷積神經網絡(CNN),作為我們的模型基礎。CNN以其在圖像辨識任務中的卓越表現而聞名。在模型訓練方面,我們使用了大量的圖片數據集進行訓練,並針對不同類別的回收物進行了多輪的迭代優化。通過反覆調整模型參數和優化算法,我們成功地提高了模型的準確性和穩定性。在測試階段,我們使用了一個獨立的測試數據集來評估模型的性能。實驗結果表明,我們的模型在資源回收物自動分類任務中取得了優異的表現,準確率超過90%。此外,為了實現系統的實際應用,我們開發了一個用於圖像輸入和分類結果顯示的使用者界面。該界面使得使用者可以輕鬆地將圖片輸入系統並獲得即時的分類結果。這使得資源回收工作人員能夠更快速和準確地進行分類,從而提高回收效率。本研究成功地開發了一個基於AI人工智慧模型的資源回收物自動分類系統。這個系統不僅提高了回收效率和資源利用率,還減輕了人力負擔。未來的研究可以進一步優化模型性能,擴大應用範圍,並探索其他環境議題的解決方案。
英文摘要
This study aims to develop an AI-based model for automatic classification of recyclable materials, in order to address the challenges of resource recycling in modern society. Resource recycling is a critical environmental issue, but it still faces problems such as manpower shortage and inaccurate classification. To improve recycling efficiency and resource utilization, this study adopts deep learning technology and designs an end-toend automatic classification model. Firstly, we collected a large dataset of recyclable material images, including various common recyclables such as paper, plastic bottles, and glass. These image datasets were annotated and preprocessed for model training and testing. Next, we selected a deep learning architecture, Convolutional Neural Network (CNN), as the foundation of our model. CNN is renowned for its excellent performance in image recognition tasks. In terms of model training, we utilized a significant amount of image datasets for training and conducted multiple rounds of iterative optimization for different categories of recyclable materials. Through repeated adjustments of model parameters and optimization algorithms, we successfully improved the accuracy and stability of the model. In the testing phase, we used an independent test dataset to evaluate the performance of the model. The experimental results demonstrate that our model achieves outstanding performance in the task of automatic classification of recyclable materials, with an accuracy rate exceeding 90%. Furthermore, to realize the practical application of the system, we developed a user interface for image input and display of classification results. This interface allows users to easily input images into the system and obtain real-time classification results. This enables recycling workers to classify materials more quickly and accurately, thereby improving recycling efficiency. In conclusion, this study successfully developed an AI-based model for automatic classification of recyclable materials. This system not only enhances recycling efficiency and resource utilization but also reduces manpower burdens. Future research can further optimize model performance, expand the scope of application, and explore solutions for other environmental issues.
起訖頁 424-436
關鍵詞 資源回收人工智慧深度學習卷積神經網路(CNN)Resource RecyclingArtificial IntelligenceDeep LearningConvolutional Neural Network (CNN)
刊名 中華印刷科技年報  
期數 202406 (2024期)
出版單位 社團法人中華印刷科技學會
該期刊-上一篇 閱聽人資訊尋求行為對財經頻道觀看數影響之研究
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄