月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
建築學報 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
演化式人工智慧建立專案實獲完工工期推論模式之研究
並列篇名
Evolutionary Artificial Intelligence Based Earned Schedule Inference Model for Construction Project
作者 鄭明淵 (Min-Yuan Cheng)張于漢 (Yu-Han Chang)Doddy Prayogo吳建燁 (Jiuan-Ye Wu)
中文摘要

施工過程中,受限於環境、天氣等眾多因素影響,造成完工工期經常難以準確掌控,施工單位在預測工期時,必須仰賴過去之經驗,無法即時反映影響工期之因素並利用工程現況客觀地預測完工工期。本研究以建築工程之建築物完工工期為研究標的,不包含機電、裝修工程等工期,應用演化式人工智慧作為推論模式之核心SOS-LSSVM(Symbiotic Organisms Search-Least Squares Support Vector Machine),透過案例學習發展建立專案實獲完工工期推論模式找出每期輸入變數與待完工成本之間的映射關係,進而計算預估完工工期(Estimate Schedule At Completion, ESAC)。藉此作為施工過程中作為時程管控的參考依據,以達到提前預警的目的。結果顯示本研究發展之模式RMSE低於0.03、MAPE低於10%、MAE低於3%及相關係數達0.99,相較傳統實獲值工期預測及其他人工智慧模式具較佳預測準確率。經實際案例分析對於管理者能夠有效進行時程之管控且降低工程成本。

 

英文摘要

Because of factors such as the environment and weather during a construction process, accurate control of schedule at completion (SAC) is often difficult. Builders must rely on past experience to predict the project duration. Thus, they often cannot react punctually to factors affecting the construction duration or predict objectively the SAC by using the project’s current progress. This study developed an SAC inference model for building structure using the basis evolutionary artificial intelligence - Symbiotic Organisms Search-Least Squares Support Vector Machine (SOS-LSSVM). Through training with these historical cases, it was used to map the relationships between the input variables and the cost of construction work to be completed.The learning results indicated good performance, with Root Mean Square Error (RMSE) of less than 0.03, a Mean Absolute Percentage Error (MAPE) of less than 10% , d a Mean Absolute Error (MAE) of less than 3% and a correlation of 0.99, proving the SOS-LSSVM model as more reliable than the currently prevailing method. In case study, the proposed model for provides more accurate results for assisting managers with schedule and cost management.

 

起訖頁 073-087
關鍵詞 工期預測實獲值管理SOS-LSSVMPredictionDurationEarned Value ManagementSOS-LSSVM
刊名 建築學報  
期數 201806 (104期)
出版單位 臺灣建築學會;內政部建築研究所
該期刊-上一篇 亮度評估模型應用於辦公室TAL照明之空間明亮感與節能研究
該期刊-下一篇 高齡失智友善社區之研究--以台北市信義區為例
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄