月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
科學與工程技術期刊 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
運用蟻群最佳化方法實現個人化行動學習系統
並列篇名
Applying Ant Colony Optimization to the Implementation of a Personalized Mobile Learning System
作者 江傳文
中文摘要
本文中,吾人主要探討試卷組成問題之求解。在滿足多重評估準則的要求下,此一問題之目標旨在由大型題庫中選取適當的試題進而組成最佳的試卷內容。由於試卷組成問題具有NP-hard之特性,於是許多研究便以各種近似演算法為解決此一問題之方案,試圖在合理的計算時間內獲致令人滿意的問題解。然而,目前大多數的解決方案在問題求解效能上的表現仍存在著可供改進之空間,我們因此提出一種以螞蟻搜尋技術為基礎的建構式演算法。此一演算法的主要特色在於採用一種嶄新的建構圖形,藉此導引人工螞蟻在決策過程中得以選取有效之構成問題解的元件。實驗結果顯示本研究所提出之方法在問題求解效能方面有顯著的優異表現。此外,為了驗證本文所提出方法的實用性兼且擴展其應用層面,吾人也將整合數位學習、無線網路以及行動裝置等元素,實作出一款具體可用的個人化行動學習系統。
英文摘要
In this paper, we consider the test-sheet composition problem. The objective of this problem is to compose an optimal test sheet that meets multiple assessment criteria from a large item bank. The test-sheet composition problem is known to be NP-hard. Due to the intractability of the problem, research efforts have focused on approximation algorithms to acquire satisfactory suboptimal solutions within a reasonable computation cost. However, most realistic approaches for solving the test-sheet composition problem can still be improved. We therefore propose a novel constructive algorithm based on ant colony optimization. The proposed algorithm adopts a new type of constructive graph for leading artificial ants in decision-making to select effective solution components. Experimental results demonstrated that the proposed approach was efficacious for test-sheet composition. A personalized mobile learning system is also implemented to demonstrate the practicality of the proposed algorithm.
起訖頁 13-24
關鍵詞 蟻群最佳化方法行動學習試卷組成問題ant colony optimization (ACO)mobile learningtest-sheet composition
刊名 科學與工程技術期刊  
期數 201803 (14:1期)
出版單位 大葉大學
該期刊-上一篇 植基於倒傳遞神經網路與 GPU 加速技術之訪客管理系統 設計與實作
該期刊-下一篇 國小教師對水足跡的認知、態度及教學應用之研究
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄