月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
會計評論 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
資料探勘技術在繼續經營疑慮意見診斷模型之應用
並列篇名
Going Concern Opinion: Application of Data Mining Technologies
作者 盧鈺欣林昱成林育伶
中文摘要
會計師決定是否出具繼續經營疑慮意見時,涉及專業判斷且考量因素眾多與複雜。因此,評估公司繼續經營假設是否有重大疑慮的分析性資訊對會計師而言非常重要。本文之目的係以資料探勘技術建構繼續經營疑慮意見診斷模型,並提供會計師有用之決策資訊,藉以輔助其評估對受查客戶出具繼續經營疑慮意見書之依據。首先,本文利用特徵選擇工具自眾多影響會計師出具繼續經營疑慮意見的相關變數中,篩選出6 個重要影響因素。再輔以分類技術──決策樹建構繼續經營疑慮意見診斷模型,並產出決策表供會計師參酌。實證結果顯示,本文決策表所提供之10 條分類規則,能有效區別繼續經營疑慮意見書類型,其預測準確率高達91.35%,有助於會計師評估繼續經營疑慮意見時之參考依據,降低審計風險。
英文摘要
The auditors' going concern opinion usually involves complex professional judgment and considerations. Therefore, information that may raise auditors' substantial doubts as to whether a going-concern opinion should be issued is important during the audit process. This study adopts the data mining technology to build up a going concern diagnostic model from which the auditors can obtain useful information to assess clients’ ability of remaining as a going concern. Specifically, the auditors’ going concern opinion is determined by considering six critical factors extracted from a feature selection tool and a decision table created by a diagnostic model built from a decision tree. The empirical results indicate that the 10 classification rules generated by the decision table can effectively distinguish different types of going concern audit reports with a prediction accuracy of 91.35%. Overall, this decision table facilitates the auditors in assessing clients' likelihood of continuing as a going concerns and, therefore, reducing audit risk.
起訖頁 77-108
關鍵詞 繼續經營疑慮意見資料探勘技術特徵選擇分類技術Going concern opinionData mining technologiesFeature selectionClassifier technique
刊名 會計評論  
期數 201607 (63期)
出版單位 國立政治大學會計系財團法人李先庚會計文教基金會
該期刊-上一篇 核閱方式與核閱者立場對查核績效之影響
該期刊-下一篇 董監事暨重要職員責任保險與盈餘穩健性
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄