英文摘要 |
The auditors' going concern opinion usually involves complex professional judgment and considerations. Therefore, information that may raise auditors' substantial doubts as to whether a going-concern opinion should be issued is important during the audit process. This study adopts the data mining technology to build up a going concern diagnostic model from which the auditors can obtain useful information to assess clients’ ability of remaining as a going concern. Specifically, the auditors’ going concern opinion is determined by considering six critical factors extracted from a feature selection tool and a decision table created by a diagnostic model built from a decision tree. The empirical results indicate that the 10 classification rules generated by the decision table can effectively distinguish different types of going concern audit reports with a prediction accuracy of 91.35%. Overall, this decision table facilitates the auditors in assessing clients' likelihood of continuing as a going concerns and, therefore, reducing audit risk. |