月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
觀光與休閒管理期刊 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
基於機器學習的台灣民宿訂價分析與預測模型──電子口碑的角色
並列篇名
A Pricing Analysis and Prediction Model for Taiwanese Bed and Breakfast Based On Machine Learning--The Role of Electronic Word-of-Mouth
作者 蘇致瑩陳俊智 (Chun-Chih Chen)包曉天 (Hsiao-Tien Pao)
中文摘要
政府南向政策帶動觀光產業及特色區域的民宿業蓬勃發展,線上訂房逐漸成為旅客訂房的主要管道。研究透過網路平台Booking.com,蒐集2018年宜蘭縣169家民宿之電子口碑及房型特徵資料,採用複迴歸模式及極限梯度提升(XGBoost)機器學習演算法,分析民宿訂價的重要影響變數,其模型配適能力分別達17.54%及0.43%的MAPE。XGBoost之結果顯示民宿訂價的重要影響變數依序為:是否具有景觀、房間大小、電子口碑之位置便利性及住宿感受度。XGBoost建構的民宿訂價預測模型,樣本外預測能力達22.82%之合理的MAPE。本研究建構的模型結果可供業者於投資民宿時,進行資源投放順序決策,以及擬定經營電子口碑之策略,進而提升民宿競爭力及促進我國觀光產業發展。
英文摘要
The government's policy drives the new southbound tourism industry and domestic tourism subsidies to promote the booming tourism industry, and online booking has gradually become the main channel for passengers to make reservations. Through the online platform Booking.com, this paper collects the electronic word-of-mouth and characteristics of 169 Bed and Breakfast in Yilan County in 2018, and uses the multiple regression model and the extreme gradient boosting (XGBoost) machine learning algorithm to analyze the important influence factors of the Bed and Breakfast pricing. The model matching ability is 17.54% and 0.43% of MAPE, respectively. The results of XGBoost show that the important influence factors of the pricing are: whether it is the landscape room, the room size, the location convenience of electronic word-of-mouth and the accommodation feeling. The pricing prediction model constructed by XGBoost has a reasonable MAPE with an out-of-sample prediction capability of 22.82%. The model constructed in this study can be used by the industry to predict the price of the Bed and Breakfast and to develop a strategy of actively operating electronic word-of-mouth, thereby enhancing the competitiveness of the Bed and Breakfast and promoting the development of the tourism industry in Taiwan.
起訖頁 37-51
關鍵詞 民宿訂價機器學習XGBoos電子口碑預測模型特徵重要性分析Bed and BreakfastElectronic Word-of-Mouth (EWOM)Prediction ModelFeature ImportanceMachine LearningXGBoost
刊名 觀光與休閒管理期刊  
期數 202006 (8:1期)
出版單位 觀光與休閒管理期刊編輯委員會
該期刊-上一篇 韓流選舉政治事件對觀光產業類股之股價報酬率影響
該期刊-下一篇 旅客停駐時間對地方認同意向、觀光意象與旅遊行為之關聯性宜蘭的現象觀察
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄