月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
ROCLING論文集 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
基於相依詞向量的剖析結果重估與排序
並列篇名
N-best Parse Rescoring Based on Dependency-Based Word Embeddings
作者 Yu-Ming Hsieh (Yu-Ming Hsieh)Wei-Yun Ma
英文摘要
Rescoring approaches for parsing aim to re-rank and change the order of parse trees produced by a general parser for a given sentence. The re-ranking quality depends on the precision of the rescoring function. However it is a challenge to design an appropriate function to determine the qualities of parse trees. No matter which method is used, Treebank is a widely used resource in parsing task. Most approaches utilize complex features to re-estimate the tree structures of a given sentence. Unfortunately, sizes of treebanks are generally small and insufficient, which results in a common problem of data sparseness. Learning knowledge from analyzing large-scaled unlabeled data is compulsory and proved useful in the previous works. How to extract useful information from unannotated large scale corpus has been a research issue. Word embeddings have become increasingly popular lately, proving to be valuable as a source of features in a broad range of NLP tasks. The word2vec is among the most widely used word embedding models today.
起訖頁 100-102
關鍵詞 Word EmbeddingsParsingWord DependencyRescoring
刊名 ROCLING論文集  
期數 2016 (2016期)
出版單位 中華民國計算語言學學會
該期刊-上一篇 Crowdsourcing Experiment Designs for Chinese Word Sense Annotation
該期刊-下一篇 以語言模型評估學習者文句修改前後之流暢度
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄