月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
電腦學刊 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
Diagnosis Bearing Faults Based on the Triplet Optimized Embedding Models
並列篇名
Diagnosis Bearing Faults Based on the Triplet Optimized Embedding Models
作者 Xinyang Chen (Xinyang Chen)
英文摘要

In rotating machinery, the bearing is one of the important components which improves the rotating machinery’s performance. The bearing quality determines the machine’s performance and reliability. Therefore, fault detection is a key technology to ensure the bearing’s safety and reliability. In the bearing fault diagnosis, separating the sensitive signal from vibration data is one of the challenging tasks due to the large volume of the rolling bearings. The research challenges are overcome using the Triplet Optimized Embedding Model (TOEM) that classifies the faults bearings with maximum accuracy. The triple embeddings are initially created using the ant-optimized long short-term neural model that minimizes the vibration signal. This process extracts the features from the collected data and has been classified using the autoencoder neural model. Encoder, decoder, and activation functions are incorporated during the classification process to classify the faults in bearings. The training process maximizes the fault detection accuracy compared to the existing machine learning classifiers.

 

起訖頁 047-060
關鍵詞 rotating machinerybearingsfault diagnosistriplet optimized embeddingsant optimized long short-term neural modelautoencoderclassification
刊名 電腦學刊  
期數 202410 (35:5期)
該期刊-上一篇 Fault Detection Method of Oil-immersed Transformer Based on Thermal Imaging
該期刊-下一篇 Machine Learning-based Algorithms Applied to Identifying Drug Smuggling via Postal and Express Delivery Channels
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄