月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
電腦學刊 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
DETRs with Dynamic Contrastive Denoising Training for Smartphone Assembly Parts
並列篇名
DETRs with Dynamic Contrastive Denoising Training for Smartphone Assembly Parts
作者 Hang Ma (Hang Ma)Yu-Hang Zhang (Yu-Hang Zhang)Bo-Si Liu (Bo-Si Liu)Wen-Bai Chen (Wen-Bai Chen)
英文摘要

In the scenario of 3C (Computer, Communication, Consumer Electronics), the algorithm for detecting targets in smartphone component assembly consumes a substantial amount of system computing resources.It also faces challenges such as the flexible nature of target components and the small scale of heterogeneous components, leading to low detection accuracy. To adapt to the 3C scenario, this paper proposes improvements based on the DINO object detection model. It introduces a more lightweight and powerful feature extraction backbone, Efficientnetv2, and utilizes the He-Kaiming weight initialization method to extract strong multi-scale feature maps. In training, a more efficient dynamic contrastive denoising training method is employed. This approach makes the model lightweight and accurate for 3C detection. This method outperforms leading detection algorithms in both accuracy of experimental results and parameter efficiency.

 

起訖頁 175-192
關鍵詞 3C industryobject detectionDETR decomposition
刊名 電腦學刊  
期數 202406 (35:3期)
該期刊-上一篇 Classification of Ice Crystal Images from Airborne Cloud Particle Imager Probe (CPI) Using Convolutional Neural Networks (CNN)
該期刊-下一篇 Spatial-temporal Attention Model Based on Transformer Architecture for Anomaly Detection in Multivariate Time Series Data
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄