月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
電腦學刊 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
Disentangling Representation of Variational Autoencoders Based on Cloud Models
並列篇名
Disentangling Representation of Variational Autoencoders Based on Cloud Models
作者 Jin Dai (Jin Dai)Zhifang Zheng (Zhifang Zheng)
英文摘要

Variational autoencoder (VAE) has the problem of uninterpretable data generation process, because the features contained in the VAE latent space are coupled with each other and no mapping from the latent space to the semantic space is established. However, most existing algorithms cannot understand the data distribution features in the latent space semantically. In this paper, we propose a cloud model-based method for disentangling semantic features in VAE latent space by adding support vector machines (SVM) to feature transformations of latent variables, and we propose to use the cloud model to measure the degree of disentangling of semantic features in the latent space. The experimental results on the CelebA dataset show that the method obtains a good disentangling effect of semantic features in the latent space, which proves the effectiveness of the method from both qualitative and quantitative aspects.

 

起訖頁 001-014
關鍵詞 variational autoencoderdisentangling representationcloud modeltransformation of features
刊名 電腦學刊  
期數 202312 (34:6期)
該期刊-下一篇 Dynamic Hybrid Reversible Data Hiding Based on Pixel-value-ordering
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄