月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
電腦學刊 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
Face Recognition Method Based on Lightweight Network SE-ShuffleNet V2
並列篇名
Face Recognition Method Based on Lightweight Network SE-ShuffleNet V2
作者 Hong-Rong Jing (Hong-Rong Jing)Guo-Jun Lin (Guo-Jun Lin)Zhong-Ling Liu (Zhong-Ling Liu)Jing-Li (Jing-Li)Li He (Li He)Xuan-Han Li (Xuan-Han Li)Hong-Jie Zhang (Hong-Jie Zhang)Shun-Yong Zhou (Shun-Yong Zhou)
英文摘要

We develop a more efficient lightweight network based on SE-ShuffleNet V2 to address the issues of large parameter sizes and sluggish feature extraction rates in large networks in the field of face recognition. First, to increase the network’s accuracy and inference speed, the ReLU activation function of the original ShuffleNet V2 basic unit is swapped out for a segmented linear activation function. Second, the SE attention mechanism is added to the lightweight network ShuffleNet V2, which may improve the effective feature weights and decrease the invalid feature weights, and the SE attention causes the network to focus on more helpful features. Finally, the addition of the Arcface loss function enhances the face recognition network’s capacity for categorization. Experiments indicate that the SE-ShuffleNet V2 network that we created achieves superior performance under the parameters of position and age. Particularly, the LFW accuracy is 99.38%. The algorithm presented in this research significantly increases face recognition accuracy when compared to the original ShuffleNet V2 network, therefore the additional parameters and longer inference times can be disregarded. To match the accuracy of substantial convolutional networks, we developed the lightweight SE-ShuffleNet V2.

 

起訖頁 015-024
關鍵詞 ShuffleNet V2activation functionSE attentionArcfaceface recognition
刊名 電腦學刊  
期數 202308 (34:4期)
該期刊-上一篇 Restoration and Enhancement of Fuzzy Defect Image Based on Neural Network
該期刊-下一篇 Formal Analysis and Improvement of Z-Wave Protocol
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄