月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
電腦學刊 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
An End-to-End Multi-Scale Conditional Generative Adversarial Network for Image Deblurring
並列篇名
An End-to-End Multi-Scale Conditional Generative Adversarial Network for Image Deblurring
作者 Fei Qi (Fei Qi)Chen-Qing Wang (Chen-Qing Wang)
英文摘要

For image deblurring, multi-scale approaches have been widely used as deep learning methods recently. In this paper, a novel multi-scale conditional generative adversarial network (CGAN) is proposed to make full use of image features, which outperforms most state-of-the-art methods. We define a generator network and a discriminator network. First of all, we use the multi-scale residual modules proposed in this paper as main feature extraction blocks, and add skip connections to extract multi-scale image features at a finer granularity in the generator network. Secondly, we construct PatchGAN as the discriminator network to enhance the local feature extraction capability. In addition, we combine the adversarial loss based on Wasserstein GAN with gradient penalty (WGAN-GP) theory with the content loss defined by perceptual loss as the total loss function, which is conducive to improving the consistency between the generated images and the ground-truth sharp images in content. The experimental results show that the method in this paper outperforms the state-of-the-art methods in visualization and quantitative results.

 

起訖頁 237-250
關鍵詞 conditional generative adversarial networkimage deblurringmulti-scaleend-to-end
刊名 電腦學刊  
期數 202306 (34:3期)
該期刊-上一篇 Human Activity Recognition Based on CNN and LSTM
該期刊-下一篇 An Efficient and Reliable Blockchain-based Trust Management Model for Electricity Trading Terminal
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄