月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
電腦學刊 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
A Deep Reinforcement Learning-Based Approach in Porker Game
並列篇名
A Deep Reinforcement Learning-Based Approach in Porker Game
作者 Yan Kong (Yan Kong)Yefeng Rui (Yefeng Rui)Chih-Hsien Hsia (Chih-Hsien Hsia)
英文摘要

Recent years have witnessed the big success deep reinforcement learning achieved in the domain of card and board games, such as Go, chess and Texas Hold’em poker. However, Dou Di Zhu, a traditional Chinese card game, is still a challenging task for deep reinforcement learning methods due to the enormous action space and the sparse and delayed reward of each action from the environment. Basic reinforcement learning algorithms are more effective in the simple environments which have small action spaces and valuable and concrete reward functions, and unfortunately, are shown not be able to deal with Dou Di Zhu satisfactorily. This work introduces an approach named Two-steps Q-Network based on DQN to playing Dou Di Zhu, which compresses the huge action space through dividing it into two parts according to the rules of Dou Di Zhu and fills in the sparse rewards using inverse reinforcement learning (IRL) through abstracting the reward function from experts’ demonstrations. It is illustrated by the experiments that two-steps Q-network gains great advancements compared with DQN used in Dou Di Zhu.

 

起訖頁 041-051
關鍵詞 deep reinforcement learningartificial intelligencePorker Gamesparse reward
刊名 電腦學刊  
期數 202304 (34:2期)
該期刊-上一篇 Unrestricted Face Recognition Algorithm Based on Improved Residual Network IR-ResNet-SE
該期刊-下一篇 Research on Copyright Protection Technology based on MIDI Music Structural Features
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄