月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
電腦學刊 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
Malware Family Classification Based on Vision Transformer
並列篇名
Malware Family Classification Based on Vision Transformer
作者 Jing Li (Jing Li)Xueping Luo (Xueping Luo)
英文摘要

Cybersecurity worries intensify as Big Data, the Internet of Things, and 5G technologies develop. Based on code reuse technologies, malware creators are producing new malware quickly, and new malware is continually endangering the effectiveness of existing detection methods. We propose a vision transformer-based approach for malware picture identification because, in contrast to CNN, Transformer’s self-attentive process is not constrained by local interactions and can simultaneously compute long-range mine relationships. We use ViT-B/16 weights pre-trained on the ImageNet21k dataset to improve model generalization capability and fine-tune them for the malware image classification task. This work demonstrates that (i) a pure attention mechanism applies to malware recognition, and (ii) the Transformer can be used instead of traditional CNN for malware image recognition. We train and assess our models using the MalImg dataset and the BIG2015 dataset in this paper. Our experimental evaluation found that the recognition accuracy of transfer learning-based ViT for MalImg samples and BIG2015 samples is 99.14% and 98.22%, respectively. This study shows that training ViT models using transfer learning can perform better than CNN in malware family classification.

 

起訖頁 087-099
關鍵詞 cybersecuritydeep learningvision transformermalware classificationgrayscale images
刊名 電腦學刊  
期數 202302 (34:1期)
該期刊-上一篇 Canopy-MMD Text Clustering Algorithm Based on Simulated Annealing and Canopy Optimization
該期刊-下一篇 Optical Design of Portable LED Nails Lamps
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄