月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
電腦學刊 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
Some Support Vector Regression Machines with Given Empirical Risks Partly
並列篇名
Some Support Vector Regression Machines with Given Empirical Risks Partly
作者 Lin-Kai Luo (Lin-Kai Luo)Chao-Jie Xu (Chao-Jie Xu)Ling-Jun Ye (Ling-Jun Ye)Hong Peng (Hong Peng)
英文摘要

There are often some prior requirements about empirical risk in regression problems. To meet these requirements, this paper firstly proposes two novel support vector regression machine models in which part of empirical risks are given. One is a support vector regression machine in which partial empirical risks are given (PSVR), and the other is a model in which unilateral partial empirical risks are given (UPSVR). For the samples with given empirical risk levels, PSVR meets the requirements by some inequality constraints about empirical risk levels, while for the other samples without empirical risk requirement, PSVR uses the same strategy as the tradition support vector regression (SVR) to meet the requirement of empirical risk. UPSVR is similar to PSVR, except that the inequality constrains of empirical risks are unilateral. Secondly, the dual problems and the solving methods of PSVR and UPSVR are given. Finally, the effectiveness and superiority of PSVR and UPSVR are verified by the experiments on four artificial datasets. Both PSVR and UPSVR achieve better regression performance than the traditional models respectively. At the same time, PSVR is less sensitive to the trade-off coefficient C between empirical risk and confident risk compared with SVR. Thus, PSVR can select parameter C faster and more conveniently. PSVR and UPSVR are the extensions of the traditional models. When the set of samples with given empirical risks is empty, they degenerate into the traditional models. PSVR and UPSVR are suitable for the scene with prior requirements of empirical risk.

 

起訖頁 061-072
關鍵詞 support vector regression machinepartial empirical risksconfidence riskunilateral empirical risk
刊名 電腦學刊  
期數 202210 (33:5期)
該期刊-上一篇 A Fast Clustering Method of KPI Data Based on IP-Kshape Algorithm
該期刊-下一篇 An Evaluation of Self-Built Low-Power Wide-Area Network Based on LoRa
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄