月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
電腦學刊 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
A Complexity-Reducing HEVC Intra-Mode Method Based on VGGNet
並列篇名
A Complexity-Reducing HEVC Intra-Mode Method Based on VGGNet
作者 Li-Ming Qin (Li-Ming Qin)Zhong-Jie Zhu (Zhong-Jie Zhu)Yong-Qiang Bai (Yong-Qiang Bai)Guang-Long Liao (Guang-Long Liao)Ting-Na Liu (Ting-Na Liu)
英文摘要

High-efficiency video coding (HEVC) has improved the coding performance by 50% compared with the previous H.264 coding standard. However, it has also introduced an extremely high coding complexity. The quad-tree partition used by the coding unit (CU) is one of the key factors leading to the increase in complexity. Therefore, this paper proposes a CU partition method based on a convolutional neural net-work (CNN). Aiming at the complex recursive calculation of CU partition, an improved VGGNet network structure is proposed to replace the brute-force search strategy, which effectively reduces the computa-tional complexity of intra frame coding. Finally, to enhance the effectiveness of the network model in this paper, the feature pyramid network is added to the CNN model to improve the accuracy of feature extraction. The experimental results show that the proposed method can reduce the intra coding time by 59.71% while maintaining the coding performance.

 

起訖頁 057-067
關鍵詞 video codingintra predictiondeep learningconvolutional neural network
刊名 電腦學刊  
期數 202208 (33:4期)
該期刊-上一篇 Method for Detection of Ripe Navel Orange Fruit on Trees in Various Weather
該期刊-下一篇 YOLO-Based Efficient Vehicle Object Detection
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄