月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
電腦學刊 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
Chinese News Text Classification and Its Application Based on Combined-Convolutional Neural Network
並列篇名
Chinese News Text Classification and Its Application Based on Combined-Convolutional Neural Network
作者 Kai-Feng Liu (Kai-Feng Liu)Yu Zhang (Yu Zhang)Quan-Xin Zhang (Quan-Xin Zhang)Yan-Ge Wang (Yan-Ge Wang)Kai-Long Gao (Kai-Long Gao)
英文摘要

A method based on combined-convolutional neural network (Combined-CNN) for Chinese news text classification is proposed. First of all, in order to solve the problem of a lack of special term set for Chi-nese news classification, a vocabulary suitable for Chinese long text classification is made by construct-ing a data index method. The Word2Vec pre-trained model was used to embed the text features word vectors. Second, by optimizing the structure of the classical convolutional neural network (CNN) model, a new idea of Combined-CNN model is proposed, which solves the problem of incomplete feature ex-traction of local text blocks and improves the accuracy rate of Chinese news text classification. Effective model regularization and RAdam optimization algorithm are designed in the model to enhance the model training effect. The experimental results show that the precision of the Combined-CNN model for Chi-nese news text classification reaches 93.69%. Compared with traditional machine learning methods and deep learning algorithms, the accuracy rate is improved by a maximum of 11.82% and 1.9%, respectively, and it is better than the comparison model in Recall and F-Measure. Finally, the Chinese news classifica-tion algorithm of the Combined-CNN is applied to realize a personalized recommendation system.

 

起訖頁 001-014
關鍵詞 Combined-CNNChinese newstext classificationrecommendation system
刊名 電腦學刊  
期數 202208 (33:4期)
該期刊-下一篇 Data Analysis of Amazon Product Based on LSTM and GPR
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄