月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
電腦學刊 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
MR-DBIFOA: a parallel Density-based Clustering Algorithm by Using Improve Fruit Fly Optimization
並列篇名
MR-DBIFOA: a parallel Density-based Clustering Algorithm by Using Improve Fruit Fly Optimization
作者 Wei Liu (Wei Liu)Jiaxin Wang (Jiaxin Wang)Xiaopan Su (Xiaopan Su)Yimin Mao (Yimin Mao)
英文摘要

Clustering is an important technique for data analysis and knowledge discovery. In the context of big data, the density-based clustering algorithm faces three challenging problems: unreasonable division of data gridding, poor parameter optimization ability and low efficiency of parallelization. In this study, a density-based clustering algorithm by using improve fruit fly optimization based on MapReduce (MR-DBIFOA) is proposed to tackle these three problems. Firstly, based on KD-Tree, a division strategy (KDG) is proposed to divide the cell of grid adaptively. Secondly, an improve fruit fly optimization algorithm (IFOA) which use the step strategy based on knowledge learn (KLSS) and the clustering criterion function (CFF) is designed. In addition, based on IFOA algorithm, the optimal parameters of local clustering are dynamically selected, which can improve the clustering effect of local clustering. Meanwhile, in order to improve the parallel efficiency, the density-based clustering algorithm using IFOA (MR-QRMEC) are proposed to parallel compute the local clusters of clustering algorithm. Finally, based on QR-Tree and MapReduce, a cluster merging algorithm (MR-QRMEC) is proposed to get the result of clustering algorithm more quickly, which improve the core clusters merging efficiency of density-based clustering algorithm. The experimental results show that the MR-DBIFOA algorithm has better clustering results and performs better parallelization in big data.

 

起訖頁 101-114
關鍵詞 density-based clustering algorithmKD-TreeMR-DBIFOAfruit fly optimization
刊名 電腦學刊  
期數 202202 (33:1期)
該期刊-上一篇 A Progressive Real-time Visualization Method for Earthquake Big Data
該期刊-下一篇 An Assembly Line Multi-Station Assembly Sequence Planning Method Based on Particle Swarm Optimization Algorithm
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄