月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
建築學報 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
中小學校舍耐震評估模式之優化-以敏感度分析及人工智慧理論為研究方法
並列篇名
To Optimize the Seismic Assessment Model of School Building using Sensitivity Analysis and Artificial Intelligence Theory
作者 陳清山 (Ching-Shan Chen)
中文摘要

中小學校舍具有教育場所及災民臨時收容所之雙重機能,地位極為重要。如何正確且快速評估現有校舍耐震能力,以發揮校舍應有的功能,乃一件刻不容緩的工作。此外目前研究人員以人工智慧推論校舍耐震能力時,對於如何選擇適當的案例數量和耐震因子數目,亦常感到困擾,因為兩者之數目過多,建立資料庫及推論時將極耗費時間和成本,數目太少則推論結果欠佳,這也是一個值得探討的課題。為解決上述課題,本研究採用數種優化耐震評估模式的研究方法: 首先利用敏感度分析理論,試驗於何種校舍案例數量和耐震因子數目下,可得到較佳的耐震評估模式; 再採用灰色理論探討校舍耐震因子與耐震能力之關聯度; 最後應用支持向量機和基因表達規劃法推論最佳校舍耐震評估模式,並以交叉驗證法(10-Fold Cross-Validation)驗證支持向量機。從研究結果中可知,研究人員於應用人工智慧理論時,因子數目至少應取5個,若欲使人工智慧呈現較佳之推論結果,則因子數目可取10個以上。測試案例數量則至少應取因子數目之2倍,3倍以上尤佳。以支持向量機和基因表達規劃法所推論的耐震評估模式,均得到頗佳的結果。此研究成果可提供建築師及一般工程人員使用,所發展之研究方法,亦可供學術界後續研究之參考。

 

英文摘要

School buildings are designed to serve both as places of education and as temporary shelters in the aftermath of major earthquakes, such the status of school buildings are very important. Therefore, how to correctly and quickly assess the seismic performance of an existing school building is an urgent issue that deserved to further investigate. Moreover, when the researchers using artificial intelligence to infer the seismic performance of the school building, it is also a disturbing topic worthy of discussion on how to determine the appropriate number of school cases and seismic factors. Because when the number is excessive, it will take lots of time and cost to build the seismic database and infer the seismic assessment model. If the number is insufficient, the inference result will be not satisfactory. In order to solve the above subjects, this paper used several research methods to optimize the seismic assessment model. Firstly, the sensitivity analysis was applied to test an optimal model under the consideration of number of school cases and seismic factors. Then used the grey theory to explore the relationships between the seismic factors and seismic performance of school buildings. Finally, adopted support vector machine (SVM) and gene expression programming (GEP) to deduce the optimal models, SVM were also validated by 10-Fold Cross-Validation. Results show that when researchers apply artificial intelligence theory, the number of factors should be at least five. If researchers want to get a better inference result, the number of factors can be more than ten. As for the number of testing cases, two times the number of factors should be taken, and more than three times is preferred. The seismic assessment models inferred by SVM and GEP, possess good performance. These results can be used by architects and general engineers, and the developed research methods can also be referenced for subsequent researches in academia.

 

起訖頁 001-020
關鍵詞 校舍人工智慧敏感度分析基因表達規劃法支持向量機School BuildingArtificial IntelligenceSensitivity AnalysisGene Expression ProgrammingSupport Vector Machine
刊名 建築學報  
期數 202103 (115期)
出版單位 臺灣建築學會;內政部建築研究所
該期刊-下一篇 台灣建築物性能模擬用典型氣象年之研究
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄