英文摘要 |
In Mandarin Chinese, there are three retroflex contrasts of fricatives and affricates. The major acoustical difference between these retroflex contrasts is the spectral pattern of frication noise, but the perceptual distinction between these contrasts is subtle in nature. It is of interest to discover if children with learning disabilities (LD) have difficulty differentiating the retroflex contrasts perceptually, as well as whether children with LD have different response patterns for the task of retroflex detection. Purpose: The purpose of this study was to compare differences in the auditory identification of retroflexes between children with LD and children without LD, and to investigate the acoustical spectral parameters related to the retroflex perceptual judgment of the two groups of children. Methods: There were a total of 60 children participating in the experiment, 30 of which had LD and 30 that did not. The children that did not have LD served as the control group. The ages of the subjects ranged from 9 to 12 years old. The perceptual task was to listen to monosyllabic words one by one and judge if the stimuli were retroflexes or not as quickly as possible. In the second task, the stimuli were bisyllabic words, and the retroflex judgment was constrained to the first syllable of each word. Results: The results showed that the percentage of correct retroflex identifications of monosyllabic words for children with LD was 52%, which was significantly lower than that for the control group, at 66%. For the bisyllabic word stimuli, the trend of the response patterns was similar to that for the monosyllabic words. The percentage of correct retroflex identifications for children with LD was 51%, which was significantly lower than that for the control group, at 66%. For nonretroflexed stimuli, the LD group had more ‘false alarm’ responses. Moreover, the LD group had more errors for words with nonretroflexed aspirated consonants. This suggested that for listeners with LD, the detection of retroflex features might
interfere with the aspirated features. Using the retroflexion response of the two groups, the spectral moments of the frication noise in the words were acoustically analyzed. The results showed that the level of contrast between two categories (retroflexed vs. nonretroflexed) on the four moment values for the LD group was greatly reduced, especially in the first moment, M1, which implied the spectral frequency gravity of frication noise. In fact, M1 for retroflexed consonants should be lower than for their nonretroflexed counterparts; however, the responses of children with LD showed no such trends. Stepwise multi-regression also showed M1 to be the only robust variable entering the model. This held true for both groups, but the multi-regression correlation coefficient for the control group (R = 0.66) was much higher than that for the LD group (R = 0.23). Conclusions/Implications: The conclusions and implications of this study were as follows. The children with LD had difficulties differentiating the retroflex contrasts perceptually. The results of the spectral moment analysis suggested that the children with LD did not differentiate retroflexion according to M1, which is an important cue for normal listeners. The perceptual processing of the frequency gravity for the frication noise in speech may be defective for children with LD. This suggested that they may have auditory frequency resolution deficits during speech noise processing. |