月旦知識庫
月旦知識庫 會員登入元照網路書店月旦品評家
 
 
  1. 熱門:
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
電子商務學報 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
應用嶄新的深層模糊對偶支持向量迴歸機網路於股價預測
並列篇名
A Novel Deep Structured Fuzzy Dual Support Vector Regression Machine - Application for Stock Market Prediction
作者 張俊陽郝沛毅
中文摘要
深度學習擁有優異的特徵學習能力,支持向量機擁有優異推理能力。近年來,完美結合兩者優點的深層支持向量機網路吸引眾多學者的關注,與傳統深層神經網路相比,深層支持向量機網路有下列優點:(1)具有較高的推理能力;(2)更適合在訓練樣本數目不足的任務。本論文提出一個嶄新的深層模糊對偶支持向量迴歸網路,透過股價的數值資料來預測股價的變動。本研究融合:(1)演化計算,(2)集成學習,(3)深度學習與(4)多核心函數學習的優點。本研究提出的深層模糊對偶支持向量迴歸機除了能提供最可能的預測結果,還可以提供預測結果的模糊範圍的內界與外界,以及提供預測結果的信心程度,這對於對於股票買賣的決策制定任務是很重要的。
英文摘要
Stock markets occupy a critical position in modern society. The aspiration of every investor is to accurate predict the stock market behavior aiming to maximize his profits. This is a difficult problem because market behavior is volatile, stochastic and affected by many factors such as politics, global economy, investor expectation and others. Deep learning methods have the advantage of learning features automatically through multiple layers of mapping. Support vector machines (SVM) have the advantage of generalizing very well on many different classification and regression datasets. In recent years, deep structured support vector machine networks that successfully combine the superior advantage of both models have received great attention in industry and academia. Comparing with other deep learning networks, deep SVM has many benefits, including (1) the deep SVM has beter regularization ability to avoid overfitting; (2) deep SVM is able to deal with problem of few training samples and high-dimensional feature space. In this paper, we develop a novel deep structured fuzzy dual support vector regression (SVR) machines networks to forecast the market behavior by using the numerical information (stock’s close price) available online. The proposed model is a hybrid model which combines the advantages of: (1) ensemble learning, (2) deep learning, (3) evolutionary optimization, and (4) multiple kernel learning. The proposed method determines the outer and inner bounds of the vagueness region for the estimated result. The proposed deep dual SVR model is able to indicate a level of confidence for the predicted results. The interpretable characteristic for the level of confidence makes the proposed approach more suitable for decision making problem.
起訖頁 55-97
關鍵詞 深度學習支持向量機模糊對偶迴歸股價預測Deep learningsupport vector machinefuzzy dual regression modelstock price prediction
刊名 電子商務學報  
期數 202504 (27:1期)
出版單位 中華企業資源規劃學會
該期刊-上一篇 NFT-based車輛與零件履歷驗證平台
該期刊-下一篇 網路直播再觀看意圖:類社會臨場感與社會認同的觀點
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄