月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
技術學刊 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
Improved Lightweight YOLOv4 Smoke Detection Based on ECA Attention
並列篇名
Improved Lightweight YOLOv4 Smoke Detection Based on ECA Attention
作者 Yuan-Bin Wang (Yuan-Bin Wang)Yu Duan (Yu Duan)Bin-Chao Wu (Bin-Chao Wu)Hua-Ying Wu (Hua-Ying Wu)Qian Han (Qian Han)
英文摘要
Smoke detection technology is of great significance for early fire warning. Aiming at the problems of low precision and slow speed in complex scenes and the inability to frame the smoke area quickly, a video smoke detection method based on lightweight YOLOv4 is proposed. Firstly, efficient channel attention (ECA)-bneck is introduced into the backbone network to extract image features, avoid the interference of redundant background, and enhance the detection performance. Then a 1×1 convolution is added to form the backward residual structure and strengthen the ability of learning features to improve the detection precision. Finally, standard convolution is replaced by depthwise separable convolution to compress the amount of network parameters, and reduces the number of CSP modules in the backbone to improve the detection speed; Experiments show that the proposed algorithm has strong adaptability in complex scenes, the model detection accuracy reaches 98.2%, and the detection frame rate is increased by 9.25 frames per second on average.
起訖頁 25-34
關鍵詞 Smoke detectionAttention mechanismLightweightYOLOv4ECA-bneckDepthwise separable convolution
刊名 技術學刊  
期數 202403 (39:1期)
出版單位 國立臺灣科技大學
該期刊-上一篇 Small Size Effect on the Sensitivity Analysis of a Sio2 Cantilever Beam with Attached Mass and Linear Spring
該期刊-下一篇 Development of A Consumer Preference Model for Purchasing Leather Bags in Indonesia
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄