月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
建築學報 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
街屋耐震評估模型之研究──以人工智慧及敏感度分析理論為研究方法
並列篇名
To Interpret the Seismic Assessment Models of Street Houses Using Artificial Intelligence and Sensitivity Analysis Theories
作者 陳清山 (Ching-Shan Chen)
中文摘要
街屋為台灣常見的住宅型態,據營建署2015年住宅調查統計,街屋約占住宅類型中49.20%之比例,可見街屋為台灣重要的住宅類型。此種低矮型建築型態在歷次地震中破壞嚴重,遭受極大之生命及財產損失。如何快速評估現有街屋耐震能力,以發揮街屋應有的功能,乃一件刻不容緩的工作。除此之外,目前研究人員以人工智慧推論建築物耐震能力時,對於如何決定適當的因子數目,以及如何判定推論模型的優劣,亦常感到困擾,這也是一個值得探討的課題。本論文以崩塌地表加速度代表街屋耐震能力,由於崩塌地表加速度之計算常須耗費大量的時間及金錢,且必須倚賴該領域專家之知識才能訂定,非一般工程人員可以勝任。為解決上述課題,並保存專家寶貴的知識,採用主成份分析法、資料探勘以及人工智慧中的灰色理論、類神經網路和基因表達規劃法,推論街屋之耐震因子及耐震能力;並應用敏感度分析,測試於不同耐震因子數目下,各耐震評估模型之推論能力,結果顯示,13個耐震因子的推論能力最佳,類神經網路和基因表達規劃法之推論結果亦頗為良好。本研究主要採用人工智慧理論為研究方法,以不同的面向探究街屋耐震領域,希望能以不同的研究角度獲得耐震評估的新思維。研究成果可提供建築專業者使用,所發展的研究方法亦可供學術界後續研究的參考。
英文摘要
Street house is a common type of housing in Taiwan. According to the statistics of the 2015 housing survey of Construction and Planning Agency, street houses occupied 49.20% of the housing types. It can be seen that street house is an important housing type in Taiwan. This type of low-rise building was severely damaged in previous earthquakes and suffered great loss of life and property. Therefore, how to quickly assess the seismic performance of existing street houses are critical issues that deserved to further investigate. Besides, when the researchers using artificial intelligence to infer the seismic performance of street houses, are often confused about how to determine the appropriate number of factors and judge the pros and cons of the seismic inference model. These are also main topics worthy of discussions. This paper adopted the collapse ground acceleration as the seismic performance of street houses. Owing to the calculation of the acceleration often takes lots of time and budget, and must rely on the knowledge of experts in the field to determine, it is difficult for general engineers to accomplish this job. In order to solve the above problems and preserve the valuable knowledge of experts, the principal component analysis, data mining, grey theory, artificial neural network (ANN) and gene expression programming (GEP) method were used to infer the seismic factors and assessment models of street houses. Furthermore, this paper also used the sensitivity analysis to experiment the seismic assessment model under different number of seismic factors. Results show that when using 13 seismic factors, the seismic assessment model is the best, and the inference results of the ANN and GEP are also good. This paper mainly used artificial intelligence theories as the research methods, exploring the seismic assessments of street houses with different aspects, hoping to obtain new vision about seismic evaluation from different research perspectives. The research results can be used by construction professionals, and the developed research methods also can be referenced for subsequent researches in academia.
起訖頁 17-38
關鍵詞 街屋人工智慧耐震評估基因表達規劃法類神經網路Street HouseArtificial IntelligenceSeismic AssessmentGene Expression ProgrammingArtificial Neural Network
刊名 建築學報  
期數 202206 (120期)
出版單位 臺灣建築學會;內政部建築研究所
該期刊-上一篇 營運階段綠辦公建築管理與維護之評估指標研究
該期刊-下一篇 運用影像辨識法比較行人道綠視率對熱環境之影響
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄