月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
台灣土地研究 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
監督式機器學習於土地覆蓋分類效益之研究
並列篇名
Research on the Benefits of Supervised Machine Learning in Land Cover Classification
作者 范慶龍
中文摘要
無人飛行載具(Unmanned Aerial Vehicles, UAV)之遙測影像相較於衛星影像有快速、機動取得地表資訊之能力,並具有低成本、高空間與時間之解析度,以及影像資料較不受雲霧干擾之特性,已廣泛地運用在小區域之監測與調查作業。本研究運用UAV高效率的遙測取像方式,並結合支持向量機(Support vector machine, SVM)、最大概似法(Maximum likelihood, ML)及隨機森林(Random forest, RF)三種監督式機器學習方法實施地表特徵樣本訓練及測試,再評估五種土地覆蓋(樹木、草地、裸露地、建築物及道路)之分類效益。旨在比較和找到最合適的分類器,以有效率地用於UAV影像之土地覆蓋分類。在鄉村地區研究結果顯示SVM的分類準確率為88%、曲線下面積(Area under the curve, AUC)為0.88、Kappa值為0.83及Gain為96.8%(前50%測試集),其綜合評估的分類效益最佳。另外,選擇地物較複雜的都市地區進行測試,SVM的分類準確率為85.4%,也是三種分類器中最佳的,尤其對於道路能正確地預測(分類)。本研究所使用之機器學習是基於RGB做出預測,無論是在鄉村或都市地區的土地覆蓋分類均有良好的成果,且三種監督式機器學習(分類器)準確率都大於78.6%以上。整體而言,三種分類器能清楚區分各種土地特徵的差異,並分析人為(building、road)與自然(tree、grassland、land)的不同光譜組成與特性,且正確的執行土地覆蓋分類。
英文摘要
Compared with that realized through satellites, remote sensing images conducted using unmanned aerial vehicles (UAV) can yield land surface information more promptly and flexibly. Moreover, this sensing involves a low cost and has a high spatial and temporal resolution. In addition, the obtained image data involve less interference pertaining to clouds and fog. UAVs have been widely used in small area monitoring and investigation operations. In this study, the high-efficiency remote sensing image method based on UAVs is adopted, and three supervised machine learning methods, namely, support vector machine (SVM), maximum likelihood (ML), and random forest (RF), are combined to implement training and testing of the land surface feature samples. Subsequently, the classification benefits of five types of land cover (tree, grassland, land, building, and road) are evaluated to identify the most suitable classifier to be used for efficient land classification for the images obtained using the UAV. For the SVM in rural areas, the classification accuracy, an area under the curve (AUC), Kappa coefficient, and Gain are 88%, 0.88, 0.83, and 96.8% (first 50% of the test set), respectively. This classifier achieves the highest classification benefit. Next, a city area with more complex features is selected for testing. The SVM classification accuracy is 85.4%, which is the maximum among the three classifiers. In particular, the SVM classifier can accurately predict (classify) roads. The machine learning approach performs predictions based on RGB. Satisfactory land classification results are obtained both in rural and urban areas. The accuracy of all three supervised machine learning classifiers is greater than 78.6%. In general, all the classifiers can clearly distinguish the land features, analyze the different spectral compositions and characteristics of artificial (building and road) and natural (tree, grassland, and land), and accurately perform land cover classification.
起訖頁 67-94
關鍵詞 土地覆蓋分類無人飛行載具監督式機器學習ClassificationLand coverUnmanned aerial vehiclesSupervised machine learning
刊名 台灣土地研究  
期數 202105  (24:1期)
出版單位 國立台北大學不動產與城鄉環境學系;國立政治大學地政學系
該期刊-上一篇 情緒能力、和睦關係、實質吸引力與專業能力對忠誠度之影響──以房屋仲介業為例
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄