月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
電腦學刊 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
A Fast Clustering Method for Real-Time IoT Data Streams
並列篇名
A Fast Clustering Method for Real-Time IoT Data Streams
作者 Jing Sun (Jing Sun)Xin Yao (Xin Yao)
英文摘要
As an effective way of data analysis, clustering is widely applied in the IoT based applications. By studying the related existing proposals of data clustering, a new clustering method for IoT Data streams is proposed in the present work. Firstly, the characteristics of PML documents in the process of data acquisition and identification are introduced and a hybrid PML document similarity calculation method based on the Bayesian network is developed and expected to assist in data streams clustering. Secondly, a PML data streams clustering method based on a dynamic sliding window is proposed. Finally, we evaluate the performance of our clustering method and the related methods with respect to Running time, Similarity, Purity, Entropy, and F-measure. Experimental results exhibit that the innovative clustering approach can adaptively learn from data streams that change over time, while still maintains comparable accuracy and speed.
起訖頁 083-094
關鍵詞 PMLBayesian network modeldata streams clusteringdynamic sliding window
刊名 電腦學刊  
期數 202102 (32:1期)
該期刊-上一篇 Behaviour Classification of Cyber Attacks Using Convolutional Neural Networks
該期刊-下一篇 Using Deep Learning to Track Stray Animals with Mobile Device
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄