月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
電子商務研究 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
用電力資訊進行主動式學習以應用於家電異常偵測
並列篇名
Active Learning for Anomaly Detection of Home Appliance Using Electric Power Information
作者 張哲瑜張瑞益賴盈勳邱建益
中文摘要
電器老舊與使用行為不當,是造成台灣家庭火災的主要原因,因此如何提早得知電器的異常狀況,並提醒使用者做相關的預防措施,便是一項重要的研究議題。本研究針對此議題使用智慧電錶來收集電器的用電資料,並結合物聯網數據分析技術提出了一套基於主動式學習的家電異常偵測方法,改善了以往方法對於異常樣本特徵收集不易的情況,並以家庭常見的電器-電風扇來做為實際實驗,其實驗結果顯示本研究的方法與傳統的方法相比,偵測的準確度能更有所提升。 Fire and accidental damage caused by appliance aging or improper operating are the main factors of home security. Therefore, how to detect the anomaly of appliances and promptly warn the users to replace or pay attention to the improvement of the appliances become an important research topic. In this study, we combine the Internet of Things and data analysis technology to this issue and apply smart meter data analysis to propose an anomaly detection method based on active learning to detect home appliance operation anomaly and to overcome the situation that collecting anomaly label is not easy. The experiment uses fans as measurement targets for proposed method. The results show that this approach compared to traditional anomaly detection method effectively improve the detection error.
英文摘要
Fire and accidental damage caused by appliance aging or improper operating are the main factors of home security. Therefore, how to detect the anomaly of appliances and promptly warn the users to replace or pay attention to the improvement of the appliances become an important research topic. In this study, we combine the Internet of Things and data analysis technology to this issue and apply smart meter data analysis to propose an anomaly detection method based on active learning to detect home appliance operation anomaly and to overcome the situation that collecting anomaly label is not easy. The experiment uses fans as measurement targets for proposed method. The results show that this approach compared to traditional anomaly detection method effectively improve the detection error.
起訖頁 453-471
關鍵詞 智慧電錶主動式學習異常偵測smart meteractive learninganomaly detection
刊名 電子商務研究  
期數 201712 (15:4期)
出版單位 國立臺北大學資訊管理研究所
該期刊-下一篇 立法委員法律提案與其網絡特性研究
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄