月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
中文計算語言學期刊 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
語音文件檢索使用類神經網路技術
並列篇名
On the Use of Neural Network Modeling Techniques for Spoken Document Retrieva
作者 羅天宏陳映文陳冠宇王新民陳柏琳
中文摘要
近年來由於含有語音資訊的多媒體內涵不斷增長,語音文件檢索已成為一個相 當熱門的議題並吸引許多學者與實務家的投入研究。除了發展強健的索引機制 和有效的檢索模型外,如何正確地且有效率地對於查詢內容進行模型化對於增 進語音文件檢索的表現也扮演著非常關鍵的角色。有鑒於此,在本論文,我們 提出一個新穎的基於類神經網路之相關性感知模型來得到較佳的查詢表示方 式,同時可以避免使用傳統較耗費時間的準相關回饋程序。再者,我們嘗試將 查詢意向分類的概念融入我們所提出的模型架構中,以進一步獲取更精緻的查 詢表示方式。在 TDT-2 語音文件及所進行的初步實驗顯示出本論文所提出方 法的效用。
英文摘要
Due to ever-increasing amounts of publicly available multimedia associated with speech information, spoken document retrieval (SDR) has been an active area of research that captures significant interest from both academic and industrial communities. Beyond the continuing effort in the development of robust indexing and effective retrieval methods to quantify the relevance degree between a pair of query and spoken document, how to accurately and efficiently model the query content plays a vital role for improving SDR performance. In view of this, we present in this paper a novel neural relevance-aware model (NRM) to infer an enhanced query representation, extricating the conventional time-consuming pseudo-relevance feedback (PRF) process. In addition, we incorporate the notion of query intent classification into our proposed NRM modeling framework to obtain more sophisticated query representations. Preliminary experiments conducted on the TDT-2 collection confirm the utility of our methods in relation to a few state-of-the-art ones.
起訖頁 1-15
關鍵詞 語音文件檢索查詢意向類神經網路準相關回饋Spoken Document RetrievalQuery IntentNeural NetworkPseudo-Relevance Feedback
刊名 中文計算語言學期刊  
期數 201712 (22:2期)
出版單位 中華民國計算語言學學會
該期刊-下一篇 Question Retrieval with Distributed Representations and Participant Reputation in Community Question Answering
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄