月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
期貨與選擇權學刊 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
投資組合保險策略之報酬分配、特性及最適履約價
並列篇名
The Return Distribution, Properties, and Optimal Strike Price for the Portfolio Insurance Strategy
作者 許溪南
中文摘要
若標的股票的報酬分配為常態分配投資,投資組合保險策略所導出的報酬分配稱為左尖峰截尾的常態分配。現有的文獻對於此種分配之機率密度函數既無解析的公式,對其報酬分配的特性亦無嚴謹的證明,導致關於保護性賣權之預期報酬與風險的ㄧ些觀點論述不正確。除了彌補此缺憾外,本文之目的為探討保護性賣權之報酬/風險特性及執行績效下之最適履約價。詳言之,本文首先推導保護性賣權所產生的報酬機率密度函數、到期的報酬機率及探討其報酬分配特性。此外,與此種分配風險相關的參數,如偏態、峰態以及系統風險,本文亦嚴謹檢驗之。最後,本文探討執行保護性賣權最佳績效之最適履約價。
英文摘要
The portfolio insurance induced return distribution is called the left-peaked and truncated normal distribution if the underlying stock returns are normally distributed. Previous literature on this type of distribution neither provides an analytical formula for its probability density function (PDF), nor offers rigorous proofs for the properties of its return distribution, making some viewpoints concerning the expected return and risk of the protective puts incorrect. In addition to bridging this gap, the purpose of this paper is to investigate the characteristics of return/risk for protective put and the optimal strike price for the performance of protective put. Specifically, we first derive the PDF for the protective put and show the probability for some specific returns on the protective put and then investigate the properties of its return distribution. Furthermore, some risk relevant parameters such as skewness and kurtosis for this type of return distribution and the systematic risk for an insured portfolio are also examined. Finally, the optimal strike price that maximizes the performance of a protective put strategy is investigated.
起訖頁 73-103
關鍵詞 投資組合保險報酬分配左尖峰截尾的常態分配特性最適履約價Portfolio insuranceReturn distributionLeft-peaked and truncated normal distributionsPropertiesOptimal strike price
刊名 期貨與選擇權學刊  
期數 201311 (6:2期)
出版單位 臺灣期貨交易所股份有限公司
該期刊-上一篇 期貨商財務績效與經營風險
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄