英文摘要 |
Personalized language models are useful in many applications, such as personalized search and personalized recommendation. Nevertheless, it is challenging to build a personalized language model for cold start users, in which the size of the training corpus of those users is too small to create a reasonably accurate and representative model. We introduce a generalized framework to enrich the personalized language models for cold start users. The cold start problem is solved with content written by friends on social network services. Our framework consists of a mixture language model, whose mixture weights are estimated with a factor graph. The factor graph is used to incorporate prior knowledge and heuristics to identify the most appropriate weights. The intrinsic and extrinsic experiments show significant improvement on cold start users. |