英文摘要 |
Due to hydraulic characteristics of constructed wetland (CW) is closely connected to the removal of particulate pollutant and nutrient, in the present study, the tracer test by salt was conducted to assess the mentioned topics by hydraulic parameters; such as, residence time distribution function (RTD), mean detention time (MDT), nominal detention time (NMT), number of stirred tanks, effective volume ratio, extent of short-circuiting. The vegetated combined CW was composed of free water surface (FWS) constructed wetland and subsurface flow (SSF) constructed wetland. According to the results obtained, the patterns of RTD are different with the ways of tracer injection. For a FWS without vegetation, the MDT is almost the same as the NDT, which is induced by the formation of large scale circulation. It is mainly resulted from the temperature difference between inflow water and wetland. When planted, the former decreases and is 56%~63% of the latter. It implies that the plant breaks down the circulation and result in more dead space. As a result, the effective volume and pollutant removal also decrease. The combined wetland of FWS and SSF shows a similar range of MDT decrease, 54%~63%. When compare the result of FWS without vegetation with planted FWS, the extent of short-circuiting decreases from 0.42 to 0.20~0.31. It shows that the vegetation increases the short-circuiting and decreases the contact between the pollutant and CW. However, the defect can be overcome by the combination of FWS and SSF since the extent of short-circuiting will increase to 0.55~0.70. The combination also influences the number of stirred tanks which increases from 0.54 to 2.53~2.88. The flow shows a feature more close to the plug flow instead of the complete mixing. As a matter of a factor, the vegetation possesses the same ability to increase the number of stirred tanks. |