英文摘要 |
In this thesis, we proposed the genetic algorithm back propagation network (GABPN), which is applied on forecasting exchange rate NT$/US$. The GABPN model replaces the traditional neural network that used the try-and-error to find the input layer neurons. We find out the optimal Input layer neurons for back propagation network (BPN) which rely on the means of genetic algorithm (GA) which gave optimal solve. The forecasting performance of GABPN obtains the best performance. We also find that the performance of GABPN, which has only ten variables, achieve the better performance than BPN which has twenty-seven variables. We infer that too many variables might interfere with the forecast performance. After the experiment, we propose a set of variables and weight that could be the consult when investors or managers forecasting the exchange rate. In the meanwhile, investor could not only know that which variables but how many lagged period are explainable. |