英文摘要 |
In this study, the 3 fundamental types (normal, thrust and strike-slip) of fault's earthquakes by theoretical method to calculate the static Coulomb failure stress changes, △CFS. The change of stress affect around of the fault system is related with its geometry. Therefore, In order to obtain the influence of exact Coulomb stress, the coordinate of stress must be transform to the effective fault plane for discussing. In this study, we fixed the area around the rupture fault and calculating the region which can be triggered. The triggered region is induced breakdown, as the probability of fault rupture induced to assess the possibility of fault-induced. The results are when the rupture fault is the strike-slip type, the triggering possibility of fault system is the strike-slip is approximately equal the normal and higher than the thrust. When the rupture fault is the thrust type, the triggering possibility of fault system is that the strike-slip is higher than the thrust and the thrust is higher than the normal. When the rupture fault is the normal type, the triggering possibility of fault systems is that the normal is higher than the strike-slip and the strike-slip is higher than the thrust.On the other hand, for the difference types of fault systems in space, their triggered rupture possibility are, for the strike-slip fault system, the triggered rupture possibility is that the strike-slip is approximately equal the thrust and higher than the normal. For the thrust fault system, the triggered rupture possibility is that the strike-slip is approximately equal the thrust and higher than the normal. For the normal fault system, the triggered rupture possibility is that the strike-slip is approximately equal the normal and higher than the thrust. So, after these discussions, we can understand the triggered rupture trend of the different types of faults. For the researches of aftershock triggered and the assessment of postseismic dangerous area, this study can provide the important basis. |