月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
醫療品質雜誌 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
利用機器學習精準搜尋並智慧分案以提升癌登個案篩選效能
並列篇名
Enhancing Cancer Case Screening Efficiency through Machine Learning for Accurate Search and Intelligent Allocation
作者 黃圓婷沈怡妏李佳鴻游淑蓉劉曄霞李季樺黃志仁
中文摘要

目的

癌症登記資料庫是癌症醫療品質改善的實證根本,目前依賴著人工逐筆檢視篩選,但符合申報條件僅佔50.4%。希冀透過機器學習自然語言處理擷取病歷資訊等關鍵字,能更精準地篩選出需申報的癌症個案並同時正確分類癌別。

材料與方法

利用南部某醫學中心2017年及2018年的已分類的3,000筆個案含21,994份病歷資料、影像報告及病理報告進行機器訓練學習。利用多元分類模型 ML.NET Multiclass Classification SDCA Maximum Entropy ,並依30癌別進行關鍵字標註,建立智慧系統預測模組。

結果

篩選結果分為「需申報」、「不需申報」、「疑似個案」三組。智慧系統預測個案申報平均正確率為89.7%及癌別分類平均正確率為89.5%。

結論

智慧預測系統協助癌登個案篩選以提升篩選效能,讓癌症登記師專注於摘錄資料的完整性及正確性,未來期可導入圖文辨識,強化預測系統判讀能力,提供各臨床團隊更高的分析價值。

 

英文摘要

Purpose

Cancer registration registries serve as the empirical foundation for improving the quality of cancer care. Unlike current methods, which rely on manual review and screening and yield only a 50.4% reporting eligibility, this study leverages machine learning and natural language processing to extract key medical record information, thus enhancing the precision in selecting cases for reporting and in classifying cancer types.

Materials and Methods

The study utilized 3,000 categorized cases from 2017 and 2018, accompanied by 21,994 medical records, imaging reports, and pathology reports from a medical center in southern Taiwan, for machine learning training. A multiclass classification model, ML.NET Multiclass Classification SDCA Maximum Entropy, was employed, and keywords were annotated for 30 types of cancer to construct a smart prediction module.

Results

The screening results were categorized into three groups: “to be reported”, “not to be reported”, and “suspected cases.” The intelligent system achieved an average accuracy rate of 89.7% in case reporting and 89.5% in cancer-type classification.

Conclusion

This smart predictive system enhances the efficiency of cancer case screening, allowing registry staff to focus on the completeness and accuracy of data extraction. Future iterations could incorporate image and text recognition to strengthen the predictive capabilities of the system, thereby providing higher analytical value to clinical teams.

 

起訖頁 036-042
關鍵詞 癌症癌症登記篩選預測機器學習Cancercancer registryscreening predictionmachine learning
刊名 醫療品質雜誌  
期數 202311 (17:6期)
出版單位 財團法人醫院評鑑暨醫療品質策進會
該期刊-上一篇 健康數據創新之門
該期刊-下一篇 透過名義團體法建置臺灣營養師次核心能力
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄