月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
運輸學刊 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
利用集成學習模式與不同時間特徵預測短期公車服務運量
並列篇名
Using Ensemble Learning Model and Time-Based Feature Extraction for Short-Term Bus Service Ridership Forecasting
作者 吳姿樺 (Zi-Hua Wu)洪百賢蘇昭銘林峰正吳東凌何毓芬
英文摘要
Urban bus service has the flexibility of high adjustment. In the planning process of timetable or headway period, operators or public authorities can construct the forecasting model with simple historical data to the face of short-term forecasting, except that the middle or long-term forecasting needs to have enough time to collect related complex data. This study uses the ensemble learning model of machine learning to forecast short-term city bus passenger volume (BPV) demand, and it uses the volume collection of e-ticket data as input data, so as the feature selection of different temporal dimensions to enhance the forecast effect. From the forecast results, it can be found that all three temporal features contribute to the improvement of forecast performance, and only using the feature of ''BPV at the same time compared to yesterday'' leads the forecast to improve dramatically. The other case only uses ''the total passenger volume compared to yesterday''; the Final case only uses ''the passenger volume compared to an hour ago''. If all three characteristics are added to the model, MAPE will be refined from 50.247% to 8.313%. In addition, compared with other models, the Stacking model used in this study has the best prediction effect.
起訖頁 153-186
關鍵詞 市區公車機器學習集成模式運量預測特徵選取Urban BusMachine LearningEnsemble LearningPassenger Flow ForecastFeature Selection
刊名 運輸學刊  
期數 202406 (36:2期)
出版單位 中華民國運輸學會
該期刊-上一篇 台灣地區定期海運服務業大數據分析能力、物流服務能力與組織績效關係之研究
該期刊-下一篇 以地理加權邏輯斯迴歸探討國道嚴重事故因子
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄