月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
戶外遊憩研究 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
Litton7:Litton視覺景觀分類深度學習模型
並列篇名
Litton7: A Deep Learning Model for the Visual Landscape Classification of Litton
作者 何立智 (Li-Chih Ho)李沁築邱浩修
中文摘要
視覺景觀分類(visual landscape classification)是以視覺特徵進行景觀資源歸類,良好的分類系統可以讓後續的規劃設計順利進行,並且讓資源管理更有效率。Litton自1968年開始在美國林務局進行了一系列的研究,建立起視覺景觀分類與評估方法,其分類架構具有相當的代表性。本研究試圖以深度學習進行Litton視覺景觀分類系統的人工智慧模型訓練,目的在降低視覺景觀資源調查的人力需求,同時增加判斷標準一致性。訓練方法上使用深度學習中的遷移學習(transfer learning)進行模型訓練,結果顯示模型實際使用精確度(precision)達80%,是可實際運用於實務的分類模型,該模型命名為Litton7(https://github.com/lichihho/Litton7.git),未來模型可朝多類別訓練改進,使其更符合人類對環境分類的習慣。
英文摘要
Visual Landscape Classification (VLC) is the categorization of landscape resources based on visual features. A good classification system can facilitate subsequent planning and design and make increase resource management efficiency more efficient. Litton has conducted a series of studies in the U.S. Forest Service since from 1968, to establish establishing a visual landscape classification and evaluation method, and its classification system is quite representative. This study attempts to train the an artificial intelligence model of of Litton’s visual landscape classificationVLC system with using deep learning. The use of , with the deep learning aims to of reduceing the manpower requirements of associated with visual landscape resource surveyance and as well asand to increaseing the consistency of judgment standards. The training method uses transfer learning to train the model, and the. The results show that indicate a model the accuracy of the model reaches up to 80%, which is a classification model that can be indicating that the model can be practically applied in the field. This model, named Litton7 (https://github.com/lichihho/Litton7.git), has the potential for future improvements by incorporating multi-class training, making it more amenable to environment classifications.
In the future, the model can be improved to encompass multi-class training, so that it can be more in line with themaking it more amenable to human habit of classifying the environment classification. Litton7 can be obtained from the following website: (https://github.com/lichihho/Litton7.git).
起訖頁 77-97
關鍵詞 人工智慧遷移學習景觀規劃景觀資源視覺景觀Artificial intelligentTransfer learningLandscape planningLandscape resourceVisual landscape
刊名 戶外遊憩研究  
期數 202406 (37:2期)
出版單位 中華民國戶外遊憩學會
該期刊-上一篇 當您購買旅遊產品時是否會發生從眾行為?以社會影響觀點探討之:兼論涉與衝動性特質之調節效果
該期刊-下一篇 後疫情時期永續旅遊發展新策略:以豪華旅遊為例
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄