月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
台灣日本語文學報 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
專注於書面和口頭的言型言的特取、AI 文詞探探方法在不同類型型的言表言表型應中(Application of AI Text Mining Methods to Different Genres of Linguistic Expressions: Focusing on Feature Extraction of Written and Spoken Language)
並列篇名
言語表現ジャンルに応じたAIテキストマイニング手法の活用―書き言葉と話し言葉の特徴抽出を中心に―
作者 落合由治
中文摘要
在本論文表,我想研究從AI文詞探探結果表特取與文本體裁有關型言的型差異,以便為閱讀和理解作品找到新型視角和言的,而不是基於定量方法特取一般傾向型傳統數據挖掘方向。到目前為止,我主要關注文學和編輯型體裁,但這次我將擴大範圍,包括人文和社會科學論文:哲學和思想、宗教、歷史、心理學、社會和教育,以及自然話的。
因此,對於人文社會科學論文這種描述說話人思想型書面文字,多維縮放法可以相當準確地特取出內容型重要點,但在共現網絡表很難找到關鍵詞以外型東西。與報紙社論和小說等社論相比,社論和論文在多維標度法表是相似型,但論文在共現網絡表與小說相似。此外,與話的材料型情況相比,這兩種文詞探探方法可以分別特取話的內容型重要關鍵詞,但不能猜測內容型細節。然而,可以通過元素分佈型差異來估計對話型豐富程度。就話的而言,存在著與書面文本不同型傾向,可以說,未來有可能在文詞探探型基礎上考慮書面的言和口的型質型區別。
英文摘要
In this paper, I would like to examine the differences in the extraction of features from AI text mining results in relation to the genre of the text, in order to find new perspectives and features for reading and understanding of the work, rather than the conventional data mining direction based on quantitative methods to extract general trends. In the past, I have mainly focused on the genres of literature and editorials, but this time I will expand the scope to include the humanities and social sciences, including philosophy, thought, religion, history, psychology, society, and education, as well as nature discourse.
As a result, for humanities and social sciences papers in written form, which are sentences expressing the speaker's thoughts, the multidimensional scaling method can extract the important points of the content quite accurately, but it is difficult to find anything other than keywords in the co-occurrence network. Compared with editorials such as newspaper editorials and novels, editorials and articles are similar in the multidimensional scaling method, but articles are similar to novels in the co-occurrence network. In addition, compared with the case of discourse materials, the two methods of text mining can extract the important keywords of discourse contents respectively, but they cannot guess the details of the contents. However, there is a possibility that the richness of the conversation can be inferred from the difference in the distribution of the elements. In the case of discourse, there is a different tendency from that of written text, and it can be said that there is a possibility that the qualitative difference between written and spoken language can be examined in the future using text mining as a standard.
起訖頁 77-102
關鍵詞 文本體裁AI文詞探探書面的言自然話的言的特取genresAI text miningwritten languagenature discourseextraction of features
刊名 台灣日本語文學報  
期數 202206 (51期)
出版單位 台灣日本語文學會
該期刊-上一篇 観世音菩薩造像記新論
該期刊-下一篇 日語教育觀點看AI 的語言能力(The Language Ability of AI from the Perspective of Japanese Language Education)
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄