中文摘要 |
本研究應用粒子群演算法(Particle Swarm Optimization,PSO)求解開放式車輛路線問題 (Open Vehicle Routing Problem,OVRP),應用Ai and Kachitvichyanukul提出之SR-2編碼方式以及GLNPSO的學習策略作為主要求解方法,並額外增加2-Opt*與Or-Opt鄰域改善模組以加強演算法的深度搜尋,以降低求解粒子數之運用,兼顧求解效率及其品質。本研究以32題國際標竿例題進行測試,求解績效顯示:總車輛數誤差為0輛;距離成本方面,18題可求得文獻已知最佳解。本研究另外將所設計之演算法應用於求解VRP問題,以14題國際標竿例題進行測試,結果求得7題目前文獻已知最佳解,平均誤差僅為0.51%。 |