月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
ROCLING論文集 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
預訓練詞向量模型應用於客服對話系統意圖偵測之研究
並列篇名
Study on Pre-trained Word Vector Model Applied to Intent Detection of Customer Service Dialogue System
中文摘要
近年來對話商務的概念在各大科技巨頭間興起,人機互動方式由圖形化介面轉向對話交互介面的方式。因而自然語言成為人機互動介面的關鍵因子。然而教導機器要如何與人類溝通,以完成一項具體任務是相當有挑戰性的。其中一個需要克服的困難是自然語言理解,包含如何辨識使用者在詢問何種問題及如何取得文字間隱藏的資訊。讓機器了解使用者的問題意圖及資訊是相當重要的。本研究主要是針對去識別化後的中文客服對話資料,利用深度學習模型以達到辨識使用者意圖。為了更有效處理中文未知詞以及減少錯誤辨識,本研究比較不同預訓練詞向量模型與深度學習模型來辨識使用者意圖。相較於使用隨機詞嵌入,使用BERT-WWM-Chinese(BWC)模型的正確率提升近10%。這表示BWC模型產生的向量更能抓住用戶問句字詞間的語意關係。使得語意相近的字詞能產生近似的向量進而提升使用者意圖辨識的準確率。
英文摘要
In recent years, the concept of dialogue business has arisen among major technology giants, and the way of human-computer interaction has changed from a graphical interface to a dialogue interaction interface. Therefore, natural language has become a key factor in the human-computer interaction interface. However, teaching the machine to communicate with humans to accomplish a specific task can be quite challenging. One of the difficulties that needs to overcome is natural language understanding, including how to identify what questions users are asking and how to get information hidden between words. It is important to let the machine know the user's intentions and information. The dataset of this study is collected from the dialogue of customer service materials. User’s intents are recognized by deep learning models. In order to process Chinese unknown words more effectively and reduce false recognition, this study compares different pre-training vector models and deep learning models to understand user’s intents. Compared with the use of random word embedding, the correct rate of using BERT-WWM-Chinese (BWC) model is improved by nearly 10%. It shows that the semantic vector generated by BWC model can better represent the relationship between user’s words. The recognition rate of user’s intent raises because similar vectors can be generated from similar words.
起訖頁 62-71
關鍵詞 對話系統對話行為深度學習預訓練詞嵌入模型注意力機制Dialogue SystemDialogue ActDeep LearningPre-trained Word EmbeddingAttention
刊名 ROCLING論文集  
期數 2019 (2019期)
出版單位 中華民國計算語言學學會
該期刊-上一篇 基於BERT模型之多國語言機器閱讀理解研究
該期刊-下一篇 A Hybrid Approach of Deep Semantic Matching and Deep Rank for Context Aware Question Answer System
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄