月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
ROCLING論文集 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
An LSTM Approach to Short Text Sentiment Classification with Word Embeddings
並列篇名
An LSTM Approach to Short Text Sentiment Classification with Word Embeddings
作者 Jenq-Haur Wang (Jenq-Haur Wang)Ting-Wei Liu (Ting-Wei Liu)Xiong Luo (Xiong Luo)Long Wang (Long Wang)
英文摘要
Sentiment classification techniques have been widely used for analyzing user opinions. In conventional supervised learning methods, hand-crafted features are needed, which requires a thorough understanding of the domain. Since social media posts are usually very short, there's a lack of features for effective classification. Thus, word embedding models can be used to learn different word usages in various contexts. To detect the sentiment polarity from short texts, we need to explore deeper semantics of words using deep learning methods. In this paper, we investigate the effects of word embedding and long short-term memory (LSTM) for sentiment classification in social media. First, words in posts are converted into vectors using word embedding models. Then, the word sequence in sentences are input to LSTM to learn the long distance contextual dependency among words. The experimental results showed that deep learning methods can effectively learn the word usage in context of social media given enough training data. The quantity and quality of training data greatly affects the performance. Further investigation is needed to verify the performance in different social media sources.
起訖頁 214-223
關鍵詞 Sentiment ClassificationDeep LearningLong Short-Term MemoryWord2Vec Model
刊名 ROCLING論文集  
期數 2018 (2018期)
出版單位 中華民國計算語言學學會
該期刊-上一篇 On the Semantic Relations and Functional Properties of Noun-Noun Compounds in Mandarin
該期刊-下一篇 AI Clerk:會賣東西的機器人
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄