月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
電腦學刊 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
Local Path Planning via Improved Fuzzy and Q(λ)-learning Algorithms for the Mobile Robot
並列篇名
Local Path Planning via Improved Fuzzy and Q(λ)-learning Algorithms for the Mobile Robot
作者 Li Song (Li Song)Da-Zi Li (Da-Zi Li)
英文摘要

With the complexity of the robot operating environment increases, there becoming higher demands on the optimal path planning for robots. Most of the path planning is performed in known environments and static models. However, there are still challenges for robots to perform path planning in complex unknown or dynamic environments, which will suffer from deadlock problems and obstacle avoidance failures. Reinforcement learning (RL) can help fuzzy algorithm to optimize the strategy. However, the difficulty of designing the rewards in RL makes the algorithm require a large number of samples to learn the strategy, resulting in computational complexity. To solve these problems, a new local path planning based on the improved fuzzy and Q(λ)-learning algorithms is proposed, aiming to plan the shortest path and avoid obstacles. For solving the problems of breaking through and avoiding obstacles, a fuzzy controller is designed. The distance of nearest obstacle in front of the mobile robot and the distance between the obstacles in the two breakout directions are regarded as the two inputs for this controller. And the two fuzzy quantities of the mobile robot’s running angle and the safe step length are outputted. In the path planning, the Q(λ)-learning algorithm are used to optimize the weights of the running angle and the safe step, obtaining a more accurate robot position and speeding up path planning efficiency. Furthermore, to solve the overlap problems among the starting point, end point, and obstacles, a safer running environment is designed considering radiuses of these objects. Besides, the mobile robot breakout scheme and sustainable obstacle avoidance scheme are designed to solve the deadlock problem and “large obstacle” avoidance problem, respectively. Simulation results in the sparse and complex operating environment show that our proposed algorithm can plan a relatively optimal and safe path, improving the success rate of path planning.

 

起訖頁 265-284
關鍵詞 mobile robotlocal path planningimproved fuzzy algorithmQ(λ)-learningfuzzy controller
刊名 電腦學刊  
期數 202310 (34:5期)
該期刊-上一篇 The Study on Cognitive Radio Spectrum Allocation Based on Tabu-Q Learning
該期刊-下一篇 Solving the Influence Maximization-Cost Minimization Problem in Social Networks by Using a Multi-Objective Differential Evolution Algorithm
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄