月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
電腦學刊 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
Research on Video Anomaly Detection Based on Cascaded Memory-augmented Autoencoder
並列篇名
Research on Video Anomaly Detection Based on Cascaded Memory-augmented Autoencoder
作者 Lin Zhang (Lin Zhang)Zhao-Bo Chen (Zhao-Bo Chen)Xiao-Xuan Ma (Xiao-Xuan Ma)Fan-Bo Zhang (Fan-Bo Zhang)Ze-Hui Li (Ze-Hui Li)Xian-Ying Shan (Xian-Ying Shan)
英文摘要

Video anomaly detection (VAD) is crucial in public safety and intelligent video surveillance systems and has been widely researched and applied in academia. This paper proposes a video anomaly detection method based on the Cascaded Memory-augmented Autoencoder (CMAAE). CMAAE stores feature prototypes of standard samples in a memory pool and embed multiple memory-enhancing modules in the encoder-decoder structure. SE attention is introduced into memory modules to improve their performance, and skip connections are used to share attention weights among memory modules, enabling the model to learn more comprehensive feature information and enhance the quality of reconstructed video frames. Multiple loss constraint models are used during training to improve anomaly detection accuracy. CMAAE achieves outstanding performance of 99.2% on the UCSD Ped2 dataset and 89.4% on the CUHK Avenue dataset, demonstrating the effectiveness of our approach.

 

起訖頁 229-241
關鍵詞 video anomaly detectionmemory networkautoencoderabnormal events
刊名 電腦學刊  
期數 202310 (34:5期)
該期刊-上一篇 Intrusion Detection Based on Feature Reduction and Model Pruning in Electricity Trading Network
該期刊-下一篇 Research on Zero Force Control Strategy for Flexible Joints of Industrial Robot Arms
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄