月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
電腦學刊 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
Support Vector Machine based Automatic Classification Method for IoT big Data Features
並列篇名
Support Vector Machine based Automatic Classification Method for IoT big Data Features
作者 Yong-Hua Xu (Yong-Hua Xu)
英文摘要

As China’s information technology development shifts from a single high-speed growth stage to a multidimensional high-quality development stage, the Internet of Things (IoT) enters all aspects of life and becomes more and more popular. The demand for IoT big data information analysis and processing is increasing, and the important role of feature automatic classification methods becomes increasingly prominent. This research proposes SPO-SVM and WSPO-SVM models based on support vector machine for smart home environment monitoring data under the big data of Internet of Things, and then optimizes them with particle swarm optimization algorithm and adaptive method. Finally, the data set is selected for comparative experimental analysis of each optimization algorithm model. The experimental results show that the optimized WSPO-SVM model has less total misclassification and single class misclassification compared with other algorithms under Wine dataset. In cross-validation, both its classification accuracy performance outperformed other algorithms. Under 10 sets of smart home environment monitoring data sets, the WSPO-SVM algorithm model achieves 100% accuracy in 6 out of 10 test data sets, with an average accuracy of 97.67%, which is about 9% higher than the ordinary SVM algorithm model and about 15% higher than other feature classification algorithms. The experimental results prove that the WSPO-SVM algorithm can complete the feature classification work in the IoT big data environment, which meets the expectation.

 

起訖頁 015-027
關鍵詞 internet of thingsSVMSPOfeature classification algorithm
刊名 電腦學刊  
期數 202310 (34:5期)
該期刊-上一篇 Reconstruction of Communication Signal in Wireless Networks Based on Perturbation Compression Perception
該期刊-下一篇 Research on Intelligent Operation and Maintenance (O&M) Method of Complex Products based on Digital Twin
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄