月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
電腦學刊 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
DP-Kmeans and Beyond: Optimal Clustering with a new Clustering Validity Index
並列篇名
DP-Kmeans and Beyond: Optimal Clustering with a new Clustering Validity Index
作者 Zhu-Juan Ma (Zhu-Juan Ma)Zi-Han Wang (Zi-Han Wang)Xiang-Hua Chen (Xiang-Hua Chen)Feng Liu (Feng Liu)
英文摘要

The K-means clustering algorithm is widely used in many areas for its high efficiency. However, the performance of the traditional K-means algorithm is very sensitive to the selection of initial clustering centers. Furthermore, except the convex distributed datasets, the traditional K-means algorithm still cannot optimally process many non-convex distributed datasets and datasets with outliers. To this end, this paper proposes the DP-Kmeans, an improved K-means algorithm based on the Density Parameter and center replacement, which can be more accurate than the traditional K-means by dropping the random selection of the initial clustering centers and continuous updating of the new centers. Due to the unsupervised learning feature, the number of clusters and the quality of data partitions generated by the clustering algorithm cannot be guaranteed. In order to evaluate the results of the DP-Kmeans algorithm, this paper proposes the SII, a new clustering validity index based on the Sum of the Inner-cluster compactness and the Inter-cluster separateness. Based on the DP-Kmeans algorithm and the SII index, a new method is proposed to determine the optimal clustering numbers for different datasets. Experimental results on ten datasets with different distributions demonstrate that the proposed clustering method is more effective the existing ones.

 

起訖頁 001-017
關鍵詞 K-meansclustering validityoptimal clustering numberdata mining
刊名 電腦學刊  
期數 202210 (33:5期)
該期刊-下一篇 A Practical Machine-Learning-Based Approach for Leather Automatic Defect Inspection
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄