月旦知識庫
月旦知識庫 會員登入元照網路書店月旦品評家
 
 
  1. 熱門:
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
理工研究國際期刊 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
在FPGA平台利用深度學習進行智慧監控
並列篇名
Intelligent Surveillance Using Deep Learning on FPGA Platform
作者 張丰華陳居毓 (Chu-Yu Chen)
中文摘要
本文旨在針對運算資源和功率限制下,尤其是在嵌入式邊緣設備上進行即時推理的挑戰,如何有效地優化訓練和推理速度成為當前熱門的研究課題。YOLO(You Only Look Once)演算法因其只需對影像進行一次卷積神經網絡(CNN)處理,便能實現高效能和高偵測率,相比於兩階段的物件辨識工具(如R-CNN、Faster R-CNN等),YOLO演算法顯著提升了辨識速度。
在此背景下,本研究致力於在FPGA-KV260平台上結合深度學習技術,實現智慧監視系統。KV260作為一款高效能的FPGA平台,能夠充分發揮深度學習演算法的潛力,提升運算效率並節省功耗。本次實驗旨在使用YOLOv4演算法,達成以下目標:
l生成YOLOv4權重檔(Weights File):通過YOLOv4模型的訓練,結合適當的訓練集,生成專案所需的權重檔。
l串流影像至KV260並進行即時偵測:利用網路攝像頭(Webcam)將影像資訊串流至FPGA-KV260平台。透過KV260上的YOLOv4模型進行人臉偵測,並將偵測結果在電腦端顯示。實驗計畫表明,所提出的實現方法在物件光線等外在條件充足的情況下,可以達95%以上的準確率。
英文摘要
This paper focuses on addressing the challenges of real-time inference under computational resource and power limitations, especially on embedded edge devices. Optimizing both training and inference speeds efficiently in these contexts has become a significant research topic. The YOLO (You Only Look Once) algorithm, which processes images using a single pass through a convolutional neural network (CNN), achieves high performance and detection rates. Compared to two-stage object detection models like R-CNN and Faster R-CNN, YOLO significantly increases recognition speed.
In this context, the research aims to develop an intelligent surveillance system by integrating deep learning techniques on the FPGA-KV260 platform. The KV260, as a high-performance FPGA platform, maximizes the potential of deep learning algorithms, enhancing computational efficiency and reducing power consumption. This experiment aims to achieve the following objectives using the YOLOv4 algorithm:
lGenerate YOLOv4 Weights File:By training the YOLOv4 model with an appropriate dataset, a weights file required for the project will be generated. Creating a custom training dataset ensures higher accuracy compared to open-source options and aligns anchor boxes with project-specific needs, minimizing unwanted detection results.
lStream Video to KV260 for Real-Time Detection:A webcam will stream video data to the FPGA-KV260 platform, where the YOLOv4 model will perform facial detection, with results displayed on a computer. The experimental results indicate that the proposed method can achieve over 95% accuracy under favorable lighting conditions.
起訖頁 41-54
關鍵詞 深度學習YOLO演算法物件辨識FPGA-KV260平台deep learningYOLO algorithmobject detectionFPGA-KV260 platform
刊名 理工研究國際期刊  
期數 202510 (15:2期)
出版單位 國立臺南大學
該期刊-上一篇 基於長短期記憶學習模型之智慧用電設備危險及老化偵測
該期刊-下一篇 應用於鑑別糖尿病患者之氣體酸鹼值感測系統
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄