月旦知識庫
月旦知識庫 會員登入元照網路書店月旦品評家
 
 
  1. 熱門:
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
國際應用科學與工程學刊 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
Streamflow prediction using machine learning approaches with different shared socioeconomic pathways (SSPs)
並列篇名
Streamflow prediction using machine learning approaches with different shared socioeconomic pathways (SSPs)
英文摘要
Streamflow prediction is crucial for effective water resource management and flood prediction. Therefore, this study aims to predict streamflow within the Klang river catchment. Two machine learning approaches, namely artificial neural network (ANN) and support vector machine (SVM), were employed to forecast streamflow within the Klang river catchment. The performance of each model was evaluated using mean absolute error (MAE), root mean square error (RMSE), and percentage error. SVM outperformed ANN in streamflow prediction, achieving the lowest values of MAE, RMSE and percentage error, recorded as 7.23, 9.03 and 19.24, respectively. The model was then used to run the future scenarios, under two shared socioeconomic pathways (SSPs), which are SSP2-4.5 and SSP5-8.5, from coupled model intercomparison project phase 6 (CMIP6). SSP5-8.5 displays greater fluctuations than SSP2-4.5. This heightened variability evident in SSP5-8.5 can be attributed to its premise of rapid population expansion, significant technological advancements, and inadequate measures to address environmental issues. Consequently, these factors contribute to more frequent occurrences of extreme climate events.
起訖頁 3-3
關鍵詞 Artificial neural networkClimate modelCMIP6Socioeconomic pathwayStreamflow prediction.
刊名 國際應用科學與工程學刊  
期數 202506 (22:2期)
出版單位 朝陽科技大學理工學院
該期刊-上一篇 Simultaneous green extraction of tea saponins from Camellia oleifera leaf waste using deep eutectic solvents for potential animal feed and bioethanol applications
該期刊-下一篇 Developing a GA-optimized EWMA feature engineering method for real-time human activity recognition
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄