月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
ROCLING論文集 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
環境音分類使用大規模預訓練模型以及半監督式訓練之初步研究
並列篇名
A Preliminary Study on Environmental Sound Classification Leveraging Large-Scale Pretrained Model and Semi-Supervised Learning
作者 You-Sheng TsaoTien-Hong Lo (Tien-Hong Lo)Jiun-Ting LiShi-Yan Weng (Shi-Yan Weng)Berlin Chen (Berlin Chen)
中文摘要
隨著智慧裝置的應用日漸普及,環境音分類技術的研究也越加受到重視。本論文探究環境音分類使用大規模聲音預訓練模型來發展環境音分類方法;並且在假設標記資料匱乏的情境下,基於遷移學習(Transfer Learning)的概念下,使用近期被提出的FixMatch訓練演算法以及SpecAugment資料擴增技術來達到辦監督訓練的目的。在環境音分類標竿資料集UrbanSound8K的實驗顯示,我們所提出的方法能較現有的基礎方法有2.4%準確率提升。
英文摘要
With the widespread commercialization of smart devices, research on environmental sound classification has gained more and more attention in recent years. In this paper, we set out to make effective use of large-scale audio pretrained model and semi-supervised model training paradigm for environmental sound classification. To this end, an environmental sound classification method is first put forward, whose component model is built on top a large-scale audio pretrained model. Further, to simulate a low-resource sound classification setting where only limited supervised examples are made available, we instantiate the notion of transfer learning with a recently proposed training algorithm (namely, FixMatch) and a data augmentation method (namely, SpecAugment) to achieve the goal of semi-supervised model training. Experiments conducted on bench-mark dataset UrbanSound8K reveal that our classification method can lead to an accuracy improvement of 2.4% in relation to a current baseline method.
起訖頁 103-110
關鍵詞 環境音分類遷移學習半監督學習Environmental Sound ClassificationTransfer learningSemi-supervised learning
刊名 ROCLING論文集  
期數 202112 (2021期)
出版單位 中華民國計算語言學學會
該期刊-上一篇 Integrated Semantic and Phonetic Post-correction for Chinese Speech Recognition
該期刊-下一篇 Mining Commonsense and Domain Knowledge from Math Word Problems
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄