英文摘要 |
In this paper, we use domain generalization to improve the performance of the cross-device speaker verification system. Based on a trainable speaker verification system, we use domain generalization algorithms to fine-tune the model parameters. First, we use the VoxCeleb2 dataset to train ECAPA-TDNN as a baseline model. Then, use the CHT-TDSV dataset and the following domain generalization algorithms to fine-tune it: DANN, CDNN, Deep CORAL. Our proposed system tests 10 different scenarios in the NSYSU-TDSV dataset, including a single device and multiple devices. Finally, in the scenario of multiple devices, the best equal error rate decreased from 18.39 in the baseline to 8.84. Successfully achieved cross-device identification on the speaker verification system. |