月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
運輸學刊 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
結合CNN與LSTM深度學習方法,於行車紀錄器預測車輛碰撞風險之預測
並列篇名
A CNN-LSTM Based Model for Traffic Accident Prediction by Using Dashboard Camera
作者 胡大瀛莊曜瑄謝辰陽
中文摘要
交通事故件數持續增長,如何預防事故為一重要課題。隨著車輛技術的發展,自動駕駛車輛可藉由感測器(如攝像頭、雷達等)收集大量即時交通資訊,行車紀錄器也普遍應用於釐清肇事責任的工具,即時交通狀況亦可作為事故預測的資料。近年來深度學習已被廣泛作為分類、檢測和辨識的方法。深度學習方法透過深度非線性網路結構得出複雜的近似函數,並使用堆疊的隱藏層自行擷取出特徵以提升準確率。本研究採用深度學習方法,以行車紀錄器事故影片,結合預訓練的CNN 和LSTM 建構預測模型,用以預測車輛在3 秒內車輛碰撞風險。本研究採用卷積神經網路 (convolution neural network, CNN)與長短期記憶 (long short-term memory, LSTM) 分別能有效擷取資料的空間及時間特徵。
英文摘要
More and more traffic accidents have caused huge social costs in recent years. Traffic managers are devoted to improving road safety and preventing traffic accidents. With the advancement of technology, autonomous vehicles can collect a large amount of real-time traffic data through the sensors (such as cameras, radars, etc.). Dashboard cameras have also been commonly installed on vehicles to clarify the responsibility for accidents, and real-time traffic information can be used as general data for accident prediction. Deep learning has been widely used as a classification, detection, and recognition method. Deep learning models improve classification accuracy by using deep nonlinear network structures to realize complex function approximation and extract features spontaneously through multiple stacked hidden layers. This study focuses on the applications of deep learning models in traffic accident prediction. The vehicle collision video recorded by the dashboard camera is collected. A prediction model based on a pre-trained convolution neural network (CNN) and Long Short-Term Memory (LSTM) is developed for predicting vehicle collision risk 3 seconds before the collision. To provide accurate prediction results, the deep learning process in this study includes CNN and LSTM, which are used to extract spatial features and temporal features, respectively.
起訖頁 99-125
關鍵詞 自動駕駛車輛行車紀錄器碰撞風險卷積神經網路長短期記憶Autonomous vehiclesDashboard cameraconvolution neural networkLong short-term memoryCollision risk
刊名 運輸學刊  
期數 202206 (34:2期)
出版單位 中華民國運輸學會
該期刊-下一篇 自駕公車強化學習派遣之成本效益分析
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄