英文摘要 |
A travel time prediction system with a satisfactory level of prediction accuracy plays a vital role in Advanced Travel Information Systems (ATIS) to effectively control traffic flow on a highway network. Traditionally, travel time estimation and prediction in a Traffic Management Center is mostly based on the data obtained from loop and/or image detectors. A prediction model solely based on these data, however, is difficult to consider the dynamic transformation and delay of traffic flow. To partially resolve this issue, this paper proposes a novel travel time prediction framework with the capability to predict inter-ramp travel time at a satisfactory level of prediction performance. First, historical traffic data collected by each loop detector were classified into different traffic states. For each state, regression techniques were then applied to build up a travel time prediction model. Finally, the travel time of vehicles passing Electronic Toll Collect (ETC tall) booths was considered to adjust the predicted traffic states and link travel time. The results showed satisfactory performance of the proposed models. More importantly, the estimated traffic parameters could provide system managers with fruitful information about how travel time is increased by different road geometry and traffic characteristics. Consequently, effective control strategies could be devised. |